Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Gene ; 929: 148813, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094714

RESUMO

Transcription factors (TFs) have an important role in the regulation of the gene expression network. The role of TFs in the immune response of freshwater crayfish is poorly understood, but leveraging the regulatory mechanisms of immune response could augment the resistance against the invasive oomycete pathogen, Aphanomyces astaci. Previous studies indicated that the TFs CCAAT/enhancer-binding protein (C/EBP) and putative Krüppel homolog-1 protein (Kr-h1) might play a role in immune and stress response of the noble crayfish (Astacus astacus). Here, we aimed to further characterise these two gene products to gain a better understanding of their evolutionary origin, domain organisation and expression patterns across different crayfish tissues. Furthermore, we conducted an immune stimulation experiment to observe the potential changes in the gene expression of C/EBP and Kr-h1 under immune challenge in different crayfish tissues. Our results showed that both C/EBP and Kr-h1 are closely related to other C/EBPs and Kr-h1s in Malacostraca. Gene expression analysis revealed that both TFs are present in all analysed tissues, with higher expression of C/EBP in the gills and Kr-h1 in the abdominal muscle. Immune stimulation with laminarin (mimicking ß-1-3-glucan in the oomycete cell wall) showed an activation of the crayfish immune system, with an overall increase in the total haemocyte count (THC) compared to untreated control and crayfish buffered saline (CBS) treatment. On the gene expression level, an up-regulation of the C/EBP gene was detected in the laminarin treated group in hepatopancreas and heart, while no changes were observed for the Kr-h1 gene. Our results indicate an early change in C/EBP expression in multiple tissues during immune stimulation and suggest its involvement in the immune response of the noble crayfish.


Assuntos
Astacoidea , Animais , Astacoidea/imunologia , Astacoidea/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação da Expressão Gênica , Filogenia
2.
Mikrochim Acta ; 191(8): 488, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066796

RESUMO

Hydroxyl radical (·OH) scavenging capacity (HOSC) estimation is essential for evaluating antioxidants, natural extracts, or drugs against clinical diseases. While nanozymes offer advantages in related applications, they still face limitations in activity and selectivity. In response, this work showcases the fabrication of laminarin-modulated osmium (laminarin-Os) nanoclusters (1.45 ± 0.05 nm), functioning as peroxidase-like nanozymes within a colorimetric assay tailored for rational HOSC estimation. This study validates both the characterization and remarkable stability of laminarin-Os. By leveraging the abundant surface negative charges of laminarin-Os and the surface hydroxyls of laminarin, oxidation reactions are facilitated, augmenting laminarin-Os's affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (KM = 0.04 mM). This enables the laminarin-Os-based colorimetric assay to respond to ·OH more effectively than citrate-, albumin-, or other polysaccharides-based Os. In addition, experimental results also validate the selective peroxidase-like behavior of laminarin-Os under acidic conditions. Antioxidants like ascorbic acid, glutathione, tannic acid, and cysteine inhibit absorbance at 652 nm in the colorimetric platform using laminarin-Os's peroxidase-like activity. Compared with commercial kits, this assay demonstrates superior sensitivity (e.g., responds to ascorbic acid 0.01-0.075 mM, glutathione 1-15 µg/mL, tannic acid 0.5-5 µM, and monoammonium glycyrrhizinate cysteine 1.06-10.63 µM) and HOSC testing for glutathione, tannic acid, and monoammonium glycyrrhizinate cysteine. Overall, this study introduces a novel Os nanozyme with exceptional TMB affinity and ·OH selectivity, paving the way for HOSC estimation in biomedical research, pharmaceutical analysis, drug quality control, and beyond.


Assuntos
Benzidinas , Sequestradores de Radicais Livres , Glucanos , Radical Hidroxila , Osmio , Benzidinas/química , Colorimetria/métodos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Glucanos/química , Radical Hidroxila/química , Radical Hidroxila/análise , Osmio/química , Oxirredução , Peroxidase/química , Peroxidase/metabolismo
3.
Front Microbiol ; 15: 1396949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993493

RESUMO

Introduction: Campylobacter jejuni gastroenteritis is the most commonly reported zoonosis within the EU, with poultry products regarded as the primary source of transmission to humans. Therefore, finding strategies to reduce Campylobacter colonization in broilers holds importance for public health. Recent studies suggest that supplementation of broiler feed with brown algal extracts, particularly laminarin, can provide beneficial effects on broiler gut health, growth performance, and gut microbiota. However, its effect on gut microbiota development and subsequent reduction of Campylobacter loads in broiler caeca during the later stages of the birds' lives remains unclear. Methods: Experimental colonization of Ross 308 broilers with two different strains of C. jejuni was conducted, with groups fed either a basal diet or the same basal diet supplemented with 725 ppm algal extract from Saccharina latissima to provide 290 ppm laminarin. Fecal samples were collected for bacterial enumeration, and caecal samples were obtained before and after the C. jejuni challenge for the determination of microbiota development. Results and discussion: No significant differences in fecal C. jejuni concentrations between the groups fed different diets or exposed to different C. jejuni strains were observed. This suggests that both strains colonized the birds equally well and that the laminarin rich algal extract did not have any inhibitory effect on C. jejuni colonization. Notably, 16S rRNA amplicon sequencing revealed detailed data on the caecal microbiota development, likely influenced by both bird age and C. jejuni colonization, which can be valuable for further development of broiler feed formulations aimed at promoting gut health.

4.
Animal ; 18(6): 101189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850575

RESUMO

Laminaria digitata is a brown seaweed rich in prebiotic polysaccharides, mainly laminarin, but its alginate-rich cell wall could compromise nutrient access. Carbohydrase supplementation, such as individual alginate lyase and carbohydrases mixture (Rovabio® Excel AP), could enhance nutrient digestibility and prebiotic potential. This study aimed to evaluate the effect of these enzymes on nutrient digestibility and gut health of weaned piglets fed with 10% L. digitata. Diets did not affect growth performance (P > 0.05). The majority of the feed fractions had similar digestibility across all diets, but the supplementation of alginate lyase increased hemicellulose digestibility by 3.3% compared to the control group (P = 0.047). Additionally, we observed that algal zinc was more readily available compared to the control group, even without enzymatic supplementation (P < 0.001). However, the increased digestibility of some minerals, such as potassium, raises concerns about potential mineral imbalance. Seaweed groups had a higher abundance of beneficial bacteria in colon contents, such as Prevotella, Oscillospira and Catenisphaera. Furthermore, the addition of alginate lyase led to a lower pH in the colon (P < 0.001) and caecum (P < 0.001) of piglets, which is possibly a result of released fermentable laminarin, and is consistent with the higher proportion of butyric acid found in these intestinal compartments. L. digitata is a putative supplement to enhance piglet gut health due to its prebiotic polysaccharides. Alginate lyase supplementation further improves nutrient digestibility and prebiotic potential. These results suggest the potential use of L. digitata and these enzymatic supplements in commercial piglet-feeding practices.


Assuntos
Ração Animal , Suplementos Nutricionais , Digestão , Glicosídeo Hidrolases , Polissacarídeo-Liases , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Algas Comestíveis , Microbioma Gastrointestinal/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Laminaria/química , Nutrientes/metabolismo , Polissacarídeo-Liases/metabolismo , Prebióticos , Suínos , Desmame
5.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830495

RESUMO

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.


Assuntos
Antioxidantes , Polissacarídeos , Alga Marinha , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Trato Gastrointestinal Superior/metabolismo , Trato Gastrointestinal Superior/efeitos dos fármacos , Peso Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Digestão/efeitos dos fármacos , Sulfatos/química , Glucanos/química , Glucanos/farmacologia , Phaeophyceae/química , Humanos
6.
Environ Res ; 252(Pt 1): 118836, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565415

RESUMO

Marine algae-based drug discovery has recently received a lot of attention. This study was conducted to extract laminarin-enriched solvent extracts from Padina tetrastromatica and Sargassum cinereum and to evaluate their anticancer activity against the HeLa cell line in vitro (MTT assay). Furthermore, their toxicity was determined through a zebra fish model study. P. tetrastromatica and S. cinereum biomasses have a higher concentration of essential biomolecules such as carbohydrates, protein, and crude fiber, as well as essential minerals (Na, Mg, K, Ca, and Fe) and secondary metabolites. Methanol extracts, in particular, contain a higher concentration of vital phytochemicals than other solvent extracts. The laminarin quantification assay states that methanol extracts of P. tetrastromatica and S. cinereum are rich in laminarin, which is primarily confirmed by FTIR analysis. In an anticancer study, laminarin-MeE from P. tetrastromatica and S. cinereum at concentrations of 750 and 1000 µg mL-1 demonstrated 100% activity against HeLa cells. The Zebra fish model-based toxicity study revealed that the laminarin-enriched MeE of P. tetrastromatica and S. cinereum is non-toxic. These findings revealed that the laminarin-enriched MeE of P. tetrastromatica and S. cinereum has significant anticancer activity without causing toxicity.


Assuntos
Glucanos , Sargassum , Peixe-Zebra , Células HeLa , Humanos , Glucanos/farmacologia , Glucanos/química , Animais , Sargassum/química , Biomassa , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Int J Biol Macromol ; 268(Pt 1): 131640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636750

RESUMO

Visceral and somatic hypersensitivity is a common cause of functional dyspepsia. Marine bioactive components have been revealed to possess numerous valuable abilities. However, as a kind of polysaccharide extracted from brown algae, the study focused on the biological properties of laminarin is still limited, especially in gastrointestinal disorders. In our study, indicators associated with visceral sensational function and gastrointestinal microecology were determined to investigate the modulatory effects of laminarin on functional dyspepsia induced by iodoacetamide. Mice with visceral hypersensitivity were orally administrated with laminarin (50 and 100 mg per kg bw) for fourteen days. The results indicated that laminarin partly alleviated the dysfunction by regulating corticosterone secretion, the expression of 5HT3 receptors at both protein and mRNA levels, and mechanical transduction through the PIEZO2-EPAC1 axis. Furthermore, laminarin administration moderated the imbalanced gut microbial profile, including modulating the abundance of Bacteroidetes and Firmicutes. Our findings revealed that laminarin may restore the overexpression of 5HT3 receptors, the abnormal mechanical transduction, and impaired gut microecology. In conclusion, we provide evidence to support the utilization of laminarin as the ingredient of complementary and alternative medicine of regulating visceral and somatic hypersensitivity.


Assuntos
Dispepsia , Microbioma Gastrointestinal , Glucanos , Iodoacetamida , Receptores 5-HT3 de Serotonina , Animais , Receptores 5-HT3 de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/genética , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Dispepsia/tratamento farmacológico , Dispepsia/metabolismo , Glucanos/farmacologia , Masculino , Iodoacetamida/farmacologia , Corticosterona/sangue
8.
Appl Microbiol Biotechnol ; 108(1): 203, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349556

RESUMO

The rapidly rising antimicrobial resistance (AMR) in pathogenic bacteria has become one of the most serious public health challenges, with a high death rate. Most pathogenic bacteria have been recognized as a source of AMR and a primary barrier to antimicrobial treatment failure due to the development of biofilms and the production of virulence factors. In this work, nanotechnology was employed as a substitute method to control the formation of biofilms and attenuate virulence features in Pseudomonas aeruginosa and Staphylococcus aureus. We synthesized biocompatible gold nanoparticles from marine-derived laminarin as potential biofilm and virulence treatments. Laminarin-gold nanoparticles (Lam-AuNPs) have been identified as spherical, 49.84 ± 7.32 nm in size and - 26.49 ± 1.29 mV zeta potential. The MIC value of Lam-AuNPs against several drug-resistant microbial pathogens varied from 2 to 1024 µg/mL in both standard and host-mimicking media. Sub-MIC values of Lam-AuNPs were reported to effectively reduce the production of P. aeruginosa and S. aureus biofilms in both standard and host-mimicking growth media. Furthermore, the sub-MIC of Lam-AuNPs strongly reduced hemolysis, pyocyanin, pyoverdine, protease, and several forms of flagellar and pili-mediated motility in P. aeruginosa. Lam-AuNPs also inhibited S. aureus hemolysis and the production of amyloid fibrils. The Lam-AuNPs strongly dispersed the preformed mature biofilm of these pathogens in a dose-dependent manner. The Lam-AuNPs would be considered an alternative antibiofilm and antivirulence agent to control P. aeruginosa and S. aureus infections. KEY POINTS: • Lam-AuNPs were biosynthesized to control biofilm and virulence. • Lam-AuNPs show effective biofilm inhibition in standard and host-mimicking media. • Lam-AuNPs suppress various virulence factors of P. aeruginosa and S. aureus.


Assuntos
Anti-Infecciosos , Glucanos , Nanopartículas Metálicas , Humanos , Ouro/farmacologia , Hemólise , Staphylococcus aureus , Biofilmes , Fatores de Virulência
9.
Fish Shellfish Immunol ; 144: 109271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065295

RESUMO

Laminarin (LAM) is widely used as an immunopotentiator in aquaculture, but its protective mechanism is still unclear. In this study, the effects of LAM on the growth performance and resistance against Pseudomonas plecoglossicida of large yellow croaker were studied in vitro and in vivo. The 42 d-feeding trial in large yellow croaker showed that dietary LAM could obviously promote the fish growth by improving the weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR). Dietary LAM could also improve the survival rate of large yellow croakers subjected to P. plecoglossicida infection, and 500 mg/kg LAM produced the highest relative percent survival (RPS) of 35.00 %. LAM improved fish antioxidant level by enhancing serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity, and reducing malondialdehyde (MDA) content. In addition, LAM also improved fish innate immunity by increasing serum acid phosphatase (ACP) and alkaline phosphatase (AKP) activities and complement 3 (C3) content under P. plecoglossicida infection. What is more, on 9 d post P. plecoglossicida challenge, LAM could significantly decrease the bacteria load in head kidneys, spleens and livers of fish, and the lowest bacterial load was found in 500 mg/kg LAM group. In vitro, LAM exerted a protective role against inactivated P. plecoglossicida-triggered inflammatory injury in primary head kidney macrophages (PKM) of large yellow croaker by recovering cell viability, suppressing NO production, and reversing pro-inflammatory cytokine expression (IL-1ß, IL-6, and IL-8). All these findings therefore will provide insights into the protection mechanism of LAM in fish, facilitating its application in prevention and control of fish bacteriosis.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Antioxidantes/metabolismo , Pseudomonas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
10.
Int J Biol Macromol ; 256(Pt 1): 128195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008143

RESUMO

The study involves development of a green biorefinery process for obtaining fucoidan, laminarin, mannitol, alginate and protein from dry and fresh Fucus vesiculosus and Ascophyllum nodosum using hydrochloric acid and a green extraction solvent. After the extraction of fucoidan which was the targeted biomolecule, an extract and by-product (residual biomass) were obtained. The extract was passed through an ultrafiltration membrane, where fucoidan was obtained in the ultrafiltration retentate while ultrafiltration permeate was analysed for laminarin and mannitol. The residual biomass was used for obtaining alginate using ultrasound (20 kHz, 64 % amplitude and 32 min, optimum parameters for alginate extraction based on our previous study). All the samples, showed good results for alginate, laminarin and mannitol, indicating that the by-products can be utilised using this green extraction process. The comparison of both dry and fresh seaweed is relevant from an industry perspective, as fresh seaweed can directly be used for extraction, avoiding drying which adds significantly to the cost of the process. Life cycle impact assessment of the complete seaweed value chain has been carried out to identify the energy demand and key environmental hotspots. This biorefinery process can be used by industry to improve their processes and utilise the by-products generated efficiently.


Assuntos
Ascophyllum , Fucus , Glucanos , Alga Marinha , Alginatos/metabolismo , Alga Marinha/metabolismo , Fucus/metabolismo , Manitol , Polissacarídeos , Proteínas
11.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132943

RESUMO

Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann-Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 µM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression.


Assuntos
Dieta Hiperlipídica , Dislipidemias , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colesterol na Dieta/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Células CACO-2 , Camundongos Endogâmicos C57BL , Colesterol/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
12.
Animal ; 17(12): 101020, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988995

RESUMO

Breeder nutrition is an important factor for chick quality since the chick embryo relies on nutrients available in the egg for growth and development. In addition, the egg is providing the chick with important antibodies that are vital during the first weeks of life. Brown algae contains several bioactive compounds, and dietary supplementation with algal extracts have shown improved gut health and immune responses in both pigs and poultry. The aim of this study was to investigate if feeding the brown algae Saccharina latissima, intact or as an extract, to broiler breeders can affect breeder hens' antibody responses to vaccination, egg quality and transfer of antibodies and nutrients to the egg and thereby improve the quality of newly hatched chicks. Forty-five hens and nine roosters of the parent lines of the fast-growing broiler Ross 308 were included in the experiment where hens were 31 weeks at the start. The hens were housed individually and fed one of three dietary treatments for seven weeks; (a) control, (b) addition of 0.6% algal meal or (c) addition of 0.08% algal extract. The hens were given a booster vaccination against infectious bronchitis virus (IBV) 21 days after the start of experiment. During experimental days 32-42, hens were naturally mated every 5th day and hatching eggs were collected. A total of 255 chicks were hatched, and chick quality was assessed. Moreover, on chick day three, blood was collected from 48 focal chickens and total immunoglobulin Y levels and specific titres to IBV in serum were determined. The results showed that feeding the brown algae Saccharina latissima, intact or as an extract to broiler breeders did not affect egg production, egg quality, antibody responses to vaccination or transfer of antibodies from hen to chick. However, feeding intact algae significantly increased the levels of iodine and decreased the level of selenium in the eggs and resulted in a lower proportion of chicks with maximum quality score. Interestingly, algal feeding, both intact and as an extract, increased the abdominal fat pad in broiler breeders by about 17% without affecting BW. In conclusion, supplementation of broiler breeder diets with algal extract from Saccharina latissima, but not intact algal meal is a promising dietary strategy to increase the abdominal fat pad without causing any adverse effects on nutrient level in eggs or chick quality.


Assuntos
Galinhas , Óvulo , Animais , Embrião de Galinha , Feminino , Masculino , Suínos , Galinhas/fisiologia , Dieta/veterinária , Anticorpos , Nutrientes , Suplementos Nutricionais , Ração Animal/análise
13.
Plant Direct ; 7(10): e538, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37854878

RESUMO

Plants respond to fungal infections by activating defense genes including producing reactive oxygen species (ROS). The fungus Fusarium graminearum causes Fusarium head blight (FHB), a serious disease of wheat and barley. FHB results in crop yield loss and contaminates grain with mycotoxins. In a prior study, we discovered that chitin induces tissue-specific ROS burst in wheat. However, it is unknown whether other fungal cell wall components could induce defense response in wheat. Therefore, we evaluated ROS and defense gene responses in different wheat tissues that had been treated with chitin, laminarin, or both. Different ROS patterns were induced in wheat treated with laminarin or chitin. Furthermore, we found that ROS were enhanced in wheat tissues treated with both chitin and laminarin. This study provides novel information for enhancing plat immunity to increase plant resistance.

14.
J Biol Chem ; 299(11): 105294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774972

RESUMO

The glycoside hydrolase family 55 (GH55) includes inverting exo-ß-1,3-glucosidases and endo-ß-1,3-glucanases, acting on laminarin, which is a ß1-3/1-6-glucan consisting of a ß1-3/1-6-linked main chain and ß1-6-linked branches. Despite their different modes of action toward laminarin, endo-ß-1,3-glucanases share with exo-ß-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-ß-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-ß-1,3-glucanases, degraded internal ß-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. ß1-3-Glucans lacking ß1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal ß1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain ß1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that ß-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-ß-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-ß-1,3-glucanases.


Assuntos
Glicosídeo Hidrolases , beta-Glucanas , Glucanos/metabolismo , Glucose , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
15.
J Anim Sci Biotechnol ; 14(1): 114, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689725

RESUMO

BACKGROUND: Maternal nutrition is essential in keeping a highly efficient production system in the pig industry. Laminarin has been shown to improve antioxidant capacity, reduce the inflammatory response, and favor the homeostasis of intestinal microbiota. However, the effect of dietary supplementation of laminarin on the reproductive performance of sows and the growth of suckling offspring remains unknown. METHODS: A total of 40 Landrace × Yorkshire multiparous sows on d 85 of gestation, similar in age, body weight (BW), parity and reproductive performance, were randomly divided into four dietary treatments with 10 sows per treatment, receiving a control diet (basal pregnancy or lactating diets) and a basal diet supplemented with 0.025%, 0.05% and 0.10% laminarin, respectively. The experiment lasted from d 85 of gestation to d 21 of lactation. RESULTS: Laminarin supplementation linearly increased number born alive per litter (P = 0.03), average daily feed intake (ADFI, P < 0.01), and total milk yield of sows during the lactation of 1-21 d (P = 0.02). Furthermore, maternal laminarin supplementation increased the average daily gain (ADG) of piglets while tending to reduce the culling and death rate before weaning. In addition, alterations to the composition of colostrum and milk, as well as to serum inflammatory cytokines and immunoglobulins of sows were observed. The fecal microbiota profile of sows supported the improvement of reproductive performance in sows and the growth performance in suckling offspring. CONCLUSIONS: Dietary supplementation of laminarin during late pregnancy and lactation could significantly improve reproductive performance of sows and growth performance of piglets.

16.
Plants (Basel) ; 12(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631150

RESUMO

Plant resistance inducers (PRIs) harbor promising potential for use in downy mildew (DM) control in viticulture. Here, the effects of six commercial PRIs on some epidemiological components of Plasmopara viticola (Pv) on grapevine leaves were studied over 3 years. Disease severity, mycelial colonization of leaf tissue, sporulation severity, production of sporangia on affected leaves, and per unit of DM lesion were evaluated by inoculating the leaves of PRI-treated plants at 1, 3, 6, 12, and 19 days after treatment (DAT). Laminarin, potassium phosphonate (PHO), and fosetyl-aluminium (FOS) were the most effective in reducing disease severity as well as the Pv DNA concentration of DM lesions on leaves treated and inoculated at 1 and 3 DAT; PHO and FOS also showed long-lasting effects on leaves established after treatment (inoculations at 6 to 19 DAT). PRIs also prevented the sporulation of Pv on lesions; all the PRI-treated leaves produced fewer sporangia than the nontreated control, especially in PHO-, FOS-, and cerevisane-treated leaves (>75% reduction). These results illustrate the broader and longer effect of PRIs on DM epidemics. The findings open up new perspectives for using PRIs in a defense program based on single, timely, and preventative field interventions.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37642922

RESUMO

Chaetomium globosum can inhibit the growth of fusarium by means of their extracellular proteins. Two novel ß-glucanases, designated Cgglu17A and Cgglu16B, were separated from the supernatant of C. globosum W7 and verified to have the ability to hydrolyze cell walls of Fusarium sporotrichioides MLS-19. Cgglu17A (397 amino acids) was classified as glycoside hydrolase family 17 while Cgglu16B belongs to the family16 (284 amino acids). Recombinant protein Cgglu17A was successfully expressed in Escherichia coli, and the enzymes were purified by affinity chromatography. Maximum activity of Cgglu17A appeared at the pH 5.5 and temperature 50 °C, but Cgglu16B shows the maximum activity at the pH 5.0 and temperature 50 °C. Most of heavy metal ions had inhibition effect on the two enzymes, but Cgglu17A and Cgglu16B were respectively activated by Ba2+ and Mn2+. Cgglu17A exhibited high substrate specificity, almost only catalyzing the cleavage of ß-1,3-glycosidic bond, in various polysaccharose, to liberate glucose. However, Cgglu16B showed high catalytic activities to both ß-1,3-glycosidic and ß-1,3-1,4-glycosidic bonds. Cgglu17A was an exo-glucanase, but Cgglu16B was an endo-glucanase based on hydrolytic properties assay. Both of two enzymes showed potential antifungal activity, and the synergistic effect was observed in the germination experiment of pathogenic fungus. In conclusion, Cgglu17A (exo-1,3-ß-glucanase) and Cgglu16B (endo-1,3(4)-ß-glucanase) were confirmed to play a key role in the process of C. globosum controlling fusarium and have potential application value on industry and agriculture for the first time.

18.
Arch Microbiol ; 205(9): 310, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596383

RESUMO

A salt-tolerant exo-ß-1,3-glucosidase (BGL_MK86) was cloned from the xerophilic mold Aspergillus chevalieri MK86 and heterologously expressed in A. oryzae. Phylogenetic analysis suggests that BGL_MK86 belongs to glycoside hydrolase family 5 (aryl-phospho-ß-D-glucosidase, BglC), and exhibits D-glucose tolerance. Recombinant BGL_MK86 (rBGL_MK86) exhibited 100-fold higher expression than native BGL_MK86. rBGL_MK86 was active over a wide range of NaCl concentrations [0%-18% (w/v)] and showed increased substrate affinity for p-nitrophenyl-ß-D-glucopyranoside (pNPBG) and turnover number (kcat) in the presence of NaCl. The enzyme was stable over a broad pH range (5.5-9.5). The optimum reaction pH and temperature for hydrolysis of pNPBG were 5.5 and 45 °C, respectively. rBGL_MK86 acted on the ß-1,3-linked glucose dimer laminaribiose, but not ß-1,4-linked or ß-1,6-linked glucose dimers (cellobiose or gentiobiose). It showed tenfold higher activity toward laminarin (a linear polymer of ß-1,3 glucan) from Laminaria digitata than laminarin (ß-1,3/ß-1,6 glucan) from Eisenia bicyclis, likely due to its inability to act on ß-1,6-linked glucose residues. The ß-glucosidase retained hydrolytic activity toward crude laminarin preparations from marine biomass in moderately high salt concentrations. These properties indicate wide potential applications of this enzyme in saccharification of salt-bearing marine biomass.


Assuntos
Cloreto de Sódio , beta-Glucosidase , beta-Glucosidase/genética , Biomassa , Hidrólise , Filogenia , Glucanos , Glucose
19.
Plants (Basel) ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447006

RESUMO

Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.

20.
Biosci Biotechnol Biochem ; 87(10): 1111-1121, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37407435

RESUMO

ß1-3/1-6 Glucans, known for their diverse structures, comprise a ß1-3-linked main chain and ß1-6-linked short branches. Laminarin, a ß1-3/1-6 glucan extracted from brown seaweed, for instance, includes ß1-6 linkages even in the main chain. The diverse structures provide various beneficial functions for the glucan. To investigate the relationship between structure and functionality, and to enable the characterization of ß1-3/1-6 glucan-metabolizing enzymes, oligosaccharides containing the exact structures of ß1-3/1-6 glucans are required. We synthesized the monomeric units for the synthesis of ß1-3/1-6 mixed-linked glucooligosaccharides. 2-(Trimethylsilyl)ethyl 2-O-benzoyl-4,6-O-benzylidene-ß-d-glucopyranoside served as an acceptor in the formation of ß1-3 linkages. Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(tert-butyldiphenylsilyl)-1-thio-ß-d-glucopyranoside and phenyl 2,3-di-O-benzoyl-4,6-di-O-levulinyl-1-thio-ß-d-glucopyranoside acted as donors, synthesizing acceptors suitable for the formation of ß1-3- and ß1-6-linkages, respectively. These were used to synthesize a derivative of Glcß1-6Glcß1-3Glcß1-3Glc, demonstrating that the proposed route can be applied to synthesize the main chain of ß-glucan, with the inclusion of both ß1-3 and ß1-6 linkages.


Assuntos
Glucosídeos , beta-Glucanas , Sequência de Carboidratos , Oligossacarídeos/química , Glucanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA