Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Epidemics ; 48: 100780, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964130

RESUMO

While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early initiation is not always possible in postnatal pediatric HIV infections. The timing of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear and has never been modeled in infants. To investigate this question we used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. To gain insight into early after analytic treatment interruption (ATI), we constructed mathematical models to investigate the effect of time of ART initiation in delaying viral rebound when treatment is interrupted, focusing on the relative contributions of latent reservoir size and autologous virus neutralizing antibody responses. We developed a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound for RMs rebounding up to 60 days post-ATI. We find that the latent reservoir size is an important determinant in explaining time to viral rebound in infant macaques by affecting the growth rate of the virus. The presence of neutralizing antibodies can also delay rebound, but we find this effect for high potency antibody responses only. Finally, we discuss the therapeutic implications of our findings.

2.
Eur J Pharm Biopharm ; 201: 114353, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885911

RESUMO

The latent reservoir of human immunodeficiency virus (HIV) is a major obstacle in the treatment of acquired immune deficiency syndrome (AIDS). The "shock and kill" strategy has emerged as a promising approach for clearing HIV latent reservoirs. However, current latency-reversing agents (LRAs) have limitations in effectively and safely activating the latent virus and reducing the HIV latent reservoirs in clinical practice. Previously, EK-16A was extracted from Euphorbia kansui, which had the effect of interfering with the HIV-1 latent reservoir and inhibiting HIV-1 entry. Nevertheless, there is no suitable and efficient EK-16A oral formulation for in vivo delivery and clinical use. In this study, an oral EK-16A self-nanoemulsifying drug delivery system (EK-16A-SNEDDS) was proposed to "shock" the HIV-1 latent reservoir. This system aims to enhance the bioavailability and delivery of EK-16A to various organs. The composition of EK-16A-SNEDDS was optimized through self-emulsifying grading and ternary phase diagram tests. Cell models, pharmacokinetic experiments, and pharmacodynamics in HIV-1 latent cell transplant animal models suggested that EK-16A-SNEDDS could be absorbed by the gastrointestinal tract and enter the blood circulation after oral administration, thereby reaching various organs to activate latent HIV-1. The prepared EK-16A-SNEDDS demonstrated safety and efficacy, exhibited high clinical experimental potential, and may be a promising oral preparation for eliminating HIV-1 latent reservoirs.


Assuntos
Emulsões , HIV-1 , Latência Viral , HIV-1/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Administração Oral , Humanos , Ativação Viral/efeitos dos fármacos , Euphorbia/química , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Disponibilidade Biológica , Sistemas de Liberação de Fármacos por Nanopartículas , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , Masculino , Sistemas de Liberação de Medicamentos/métodos , Camundongos
3.
EBioMedicine ; 102: 105040, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485563

RESUMO

BACKGROUND: The principal barrier to an HIV cure is the presence of the latent viral reservoir (LVR), which has been understudied in African populations. From 2018 to 2019, Uganda instituted a nationwide rollout of ART consisting of Dolutegravir (DTG) with two NRTI, which replaced the previous regimen of one NNRTI and the same two NRTI. METHODS: Changes in the inducible replication-competent LVR (RC-LVR) of ART-suppressed Ugandans with HIV (n = 88) from 2015 to 2020 were examined using the quantitative viral outgrowth assay. Outgrowth viruses were examined for viral evolution. Changes in the RC-LVR were analyzed using three versions of a Bayesian model that estimated the decay rate over time as a single, linear rate (model A), or allowing for a change at time of DTG initiation (model B&C). FINDINGS: Model A estimated the slope of RC-LVR change as a non-significant positive increase, which was due to a temporary spike in the RC-LVR that occurred 0-12 months post-DTG initiation (p < 0.005). This was confirmed with models B and C; for instance, model B estimated a significant decay pre-DTG initiation with a half-life of 6.9 years, and an ∼1.7-fold increase in the size of the RC-LVR post-DTG initiation. There was no evidence of viral failure or consistent evolution in the cohort. INTERPRETATION: These data suggest that the change from NNRTI- to DTG-based ART is associated with a significant temporary increase in the circulating RC-LVR. FUNDING: Supported by the NIH (grant 1-UM1AI164565); Gilead HIV Cure Grants Program (90072171); Canadian Institutes of Health Research (PJT-155990); and Ontario Genomics-Canadian Statistical Sciences Institute.


Assuntos
População da África Oriental , Infecções por HIV , Inibidores de Integrase de HIV , HIV-1 , Humanos , Antirretrovirais/uso terapêutico , Teorema de Bayes , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Carga Viral , Latência Viral
4.
Emerg Microbes Infect ; 13(1): 2327371, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38444369

RESUMO

To date, an affordable, effective treatment for an HIV-1 cure remains only a concept with most "latency reversal" agents (LRAs) lacking specificity for the latent HIV-1 reservoir and failing in early clinical trials. We assessed HIV-1 latency reversal using a multivalent HIV-1-derived virus-like particle (HLP) to treat samples from 32 people living with HIV-1 (PLWH) in Uganda, US and Canada who initiated combined antiretroviral therapy (cART) during chronic infection. Even after 5-20 years on stable cART, HLP could target CD4+ T cells harbouring latent HIV-1 reservoir resulting in 100-fold more HIV-1 release into culture supernatant than by common recall antigens, and 1000-fold more than by chemotherapeutic LRAs. HLP induced release of a divergent and replication-competent HIV-1 population from PLWH on cART. These findings suggest HLP provides a targeted approach to reactivate the majority of latent HIV-1 proviruses among individuals infected with HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Latência Viral , Linfócitos T CD4-Positivos , Canadá
5.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140588

RESUMO

Antiretroviral therapy (ART) provides an effective method for managing HIV-1 infection and preventing the onset of AIDS; however, it is ineffective against the reservoir of latent HIV-1 that persists predominantly in resting CD4+ T cells. Understanding the mechanisms that facilitate the persistence of the latent reservoir is key to developing an effective cure for HIV-1. Of particular importance in the establishment and maintenance of the latent viral reservoir is the intercellular transfer of HIV-1 from professional antigen-presenting cells (APCs-monocytes/macrophages, myeloid dendritic cells, and B lymphocytes) to CD4+ T cells, termed trans-infection. Whereas virus-to-cell HIV-1 cis infection is sensitive to ART, trans-infection is impervious to antiviral therapy. APCs from HIV-1-positive non-progressors (NPs) who control their HIV-1 infection in the absence of ART do not trans-infect CD4+ T cells. In this review, we focus on this unique property of NPs that we propose is driven by a genetically inherited, altered cholesterol metabolism in their APCs. We focus on cellular cholesterol homeostasis and the role of cholesterol metabolism in HIV-1 trans-infection, and notably, the link between cholesterol efflux and HIV-1 trans-infection in NPs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , HIV-1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Latência Viral , Células Dendríticas/metabolismo , Colesterol/metabolismo , Replicação Viral
6.
Immunity ; 56(11): 2584-2601.e7, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922905

RESUMO

Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]). A proliferation program (IKZF3, IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-infected cells. Both latent and transcriptionally active HIV-1-infected cells had increased IKZF3 (Aiolos) expression. Distinct epigenetic programs drove the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells and cellular programs promoting HIV-1 persistence.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/genética , HIV-1/fisiologia , Latência Viral/genética , Linfócitos T CD4-Positivos , Fator de Transcrição AP-1 , Epigênese Genética , Fator de Transcrição Ikaros/genética
7.
J Virol ; 97(12): e0133423, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982648

RESUMO

IMPORTANCE: Although HIV replication can be effectively inhibited by antiretroviral therapy, this does not result in a cure as the available drugs do not inactivate the integrated HIV-1 DNA in infected cells. Consequently, HIV-infected individuals need lifelong therapy to prevent viral rebound. Several preclinical studies indicate that CRISPR-Cas gene-editing systems can be used to achieve permanent inactivation of the viral DNA. It was previously shown that this inactivation was due to small inactivating mutations at the targeted sites in the HIV genome and to excision or inversion of the viral DNA fragment between two target sites. We, here, demonstrate that CRISPR-Cas treatment also causes large unintended deletions, which can include surrounding chromosomal sequences. As the loss of chromosomal sequences may cause oncogenic transformation of the cell, such unintended large deletions form a potential safety risk in clinical application of this antiviral application and possibly all CRISPR-Cas gene-editing approaches.


Assuntos
Sistemas CRISPR-Cas , DNA Viral , Edição de Genes , Infecções por HIV , HIV-1 , Provírus , Deleção de Sequência , Humanos , Sistemas CRISPR-Cas/genética , DNA Viral/genética , Edição de Genes/métodos , Edição de Genes/normas , Infecções por HIV/genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Deleção Cromossômica , Segurança do Paciente
8.
J Virol ; 97(12): e0159523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032195

RESUMO

IMPORTANCE: Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Humanos , Camundongos , Sistema Nervoso Central , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/fisiologia , Microglia/virologia , Latência Viral , Xenoenxertos
9.
Proc Natl Acad Sci U S A ; 120(43): e2313209120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844236

RESUMO

The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy (ART) and precludes cure. Reservoir-targeting interventions are evaluated in ART-treated macaques infected with simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV). Efficacy is determined by reservoir measurements before and after the intervention. However, most proviruses persisting in the setting of ART are defective. In addition, intact HIV-1 and SIV genomes undergo complex, multiphasic decay observable when new infection events are blocked by ART. Intervention-induced elimination of latently infected cells must be distinguished from natural decay. Here, we address these issues for SHIV. We describe an intact proviral DNA assay that allows digital counting of SHIV genomes lacking common fatal defects. We show that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase (t1/2 = 30.1 d) and a slower second phase (t1/2 = 8.1 mo) that is still more rapid that the slow decay observed in people with HIV-1 on long-term ART (t1/2 = 3.7 y). In SHIV models, most interventions are tested during 2nd phase decay. Natural 2nd phase decay must be considered in evaluating interventions as most infected cells present at this time do not become part of the stable reservoir. In addition, for interventions tested during 2nd phase decay, a caveat is that the intervention may not be equally effective in people with HIV on long-term ART whose reservoirs are dominated by latently infected cells with a slower decay rate.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Replicação Viral , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Provírus/genética , HIV-1/genética , Linfócitos T CD4-Positivos , Carga Viral
10.
Viruses ; 15(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37632019

RESUMO

Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies. However, new work has demonstrated that the majority of the long-lived latent reservoir is established near the time of ART initiation, suggesting that it may be possible to pair an intervention with ART initiation to prevent the formation of a sizable fraction of the latent reservoir. Subsequent treatment with latency reversal agents, in combination with immune clearance agents, may then be a more tractable strategy for fully clearing the latent reservoir in people newly initiating ART. Here, we summarize molecular mechanisms of latency establishment and maintenance, ongoing efforts to develop effective latency reversal agents, and newer efforts to design latency prevention agents. An improved understanding of the molecular mechanisms involved in both the establishment and maintenance of latency will aid in the development of new latency prevention and reversal approaches to ultimately eradicate the latent reservoir.


Assuntos
Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Cognição
12.
J Integr Med ; 21(4): 332-353, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244763

RESUMO

Acquired immune deficiency syndrome (AIDS) is a worldwide epidemic caused by human immunodeficiency virus (HIV) infection. Newer medicines for eliminating the viral reservoir and eradicating the virus are urgently needed. Attempts to locate relatively safe and non-toxic medications from natural resources are ongoing now. Natural-product-based antiviral candidates have been exploited to a limited extent. However, antiviral research is inadequate to counteract for the resistant patterns. Plant-derived bioactive compounds hold promise as powerful pharmacophore scaffolds, which have shown anti-HIV potential. This review focuses on a consideration of the virus, various possible HIV-controlling methods and the recent progress in alternative natural compounds with anti-HIV activity, with a particular emphasis on recent results from natural sources of anti-HIV agents. Please cite this article as: Mandhata CP, Sahoo CR, Padhy RN. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. J Integr Med. 2023; 21(4):332-353.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , HIV , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
13.
Retrovirology ; 20(1): 7, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202790

RESUMO

BACKGROUND: With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells. RESULTS: We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection. CONCLUSION: Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.


Assuntos
Infecções por HIV , Humanos , Células Endoteliais , Latência Viral , Replicação Viral , Linfócitos T CD4-Positivos , Receptores CCR6
14.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162838

RESUMO

The central nervous system (CNS) is a major human immunodeficiency virus type 1 reservoir. Microglia are the primary target cell of HIV-1 infection in the CNS. Current models have not allowed the precise molecular pathways of acute and chronic CNS microglial infection to be tested with in vivo genetic methods. Here, we describe a novel humanized mouse model utilizing human-induced pluripotent stem cell-derived microglia to xenograft into murine hosts. These mice are additionally engrafted with human peripheral blood mononuclear cells that served as a medium to establish a peripheral infection that then spread to the CNS microglia xenograft, modeling a trans-blood-brain barrier route of acute CNS HIV-1 infection with human target cells. The approach is compatible with iPSC genetic engineering, including inserting targeted transgenic reporter cassettes to track the xenografted human cells, enabling the testing of novel treatment and viral tracking strategies in a comparatively simple and cost-effective way vivo model for neuroHIV.

15.
Front Microbiol ; 14: 1033448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778871

RESUMO

Antiretroviral therapy can successfully suppress HIV-1 replication to undetectable levels but fails to eliminate latent and persistent HIV-1 reservoirs. Recent studies have focused on the immunomodulatory agents such as Toll-like receptor 7 and 8 (TLR7 and TLR8) capable of activating, thereby rendering the reservoir susceptible to antiretroviral inhibition and immune recognition and elimination. In this context, this study focused on generating a diverse repertoire of TLR7/8 agonists to identify more potent candidates for activating latent HIV-1 and immune cells' response. Through combinational strategies of computer-aided design and biological characterization, 159 pyrido [3,2-d] pyrimidine and pyridine-2-amine-based derivatives were synthesized. Of which, two TLR7/8 dual and one TLR8-specific agonists with exceptionally high potency in activating HIV-1 latent reservoirs in cell lines and PBMCs of patients with persistent and durable virologic controls were identified. Particularly, these agonists appeared to enhance NK and T cells activity, which were correlated with the degree of surface activation markers. The outcome of this study highlights the remarkable potential of TLR7/8 agonists in simultaneously activating HIV-1 from the latently infected cells and augmenting immune effector cells.

16.
Cell Host Microbe ; 31(3): 356-372.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809762

RESUMO

The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral
17.
Mol Pharm ; 20(4): 2039-2052, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848493

RESUMO

For over two decades, nanomaterials have been employed to facilitate intracellular delivery of small interfering RNA (siRNA), both in vitro and in vivo, to induce post-transcriptional gene silencing (PTGS) via RNA interference. Besides PTGS, siRNAs are also capable of transcriptional gene silencing (TGS) or epigenetic silencing, which targets the gene promoter in the nucleus and prevents transcription via repressive epigenetic modifications. However, silencing efficiency is hampered by poor intracellular and nuclear delivery. Here, polyarginine-terminated multilayered particles are reported as a versatile system for the delivery of TGS-inducing siRNA to potently suppress virus transcription in HIV-infected cells. siRNA is complexed with multilayered particles formed by layer-by-layer assembly of poly(styrenesulfonate) and poly(arginine) and incubated with HIV-infected cell types, including primary cells. Using deconvolution microscopy, uptake of fluorescently labeled siRNA is observed in the nuclei of HIV-1 infected cells. Viral RNA and protein are measured to confirm functional virus silencing from siRNA delivered using particles 16 days post-treatment. This work extends conventional particle-enabled PTGS siRNA delivery to the TGS pathway and paves the way for future studies on particle-delivered siRNA for efficient TGS of various diseases and infections, including HIV.


Assuntos
Infecções por HIV , HIV-1 , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , HIV-1/genética , HIV-1/metabolismo , Inativação Gênica , Interferência de RNA , Epigênese Genética/genética , Infecções por HIV/genética , Infecções por HIV/terapia
18.
mBio ; 13(6): e0249622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214569

RESUMO

Human immunodeficiency virus type 1 (HIV-1) can integrate viral DNA into host cell chromosomes to establish a long-term stable latent reservoir, which is a major obstacle to cure HIV-1 infection. The characteristics of the HIV-1 latent reservoir have not been fully understood. Here, we identified 126 upregulated plasma membrane proteins in HIV-1 latently infected cells by a label-free liquid chromatography-tandem mass spectrometry analysis. The higher levels of CD98 expression in multiple HIV-1 latently infected cell lines and primary CD4+ T cells compared to uninfected cells were further confirmed by quantitative reverse transcription PCR (RT-qPCR) and flow cytometry analyses. In addition, CD98high CD4+ T cells displayed hyper-permissiveness to HIV-1 infection and possessed distinct immune phenotypic profiles associated with Th17 and peripheral follicular T helper (pTFH) characteristics. Notably, the CD98high resting memory CD4+ T cells harbored significantly higher cell-associated viral RNA and intact provirus than CD98low counterparts in HIV-1-infected individuals receiving combined antiretroviral therapy. Furthermore, CD98high CD4+ T cells exhibited a robust proliferative capacity and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. Our study demonstrates that CD98 can be used as a novel biomarker of HIV-1 latently infected cells to indicate the effect of various strategies to reduce the viral reservoir. IMPORTANCE Identification of cellular biomarkers is the crucial challenge to eradicate the HIV-1 latent reservoir. In our study, we identified CD98 as a novel plasma membrane biomarker for HIV-1 permissiveness and latent infection. Importantly, CD98high CD4+ T cells exhibited a hyper-permissiveness to HIV-1 infection and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. CD98 could be targeted to develop therapeutic strategies to reduce the HIV-1 latent reservoir in further research.


Assuntos
Infecções por HIV , HIV-1 , Infecção Latente , Humanos , Biomarcadores/análise , Linfócitos T CD4-Positivos , HIV-1/genética , Permissividade , Latência Viral , Replicação Viral , Proteína-1 Reguladora de Fusão/análise
19.
Pharmaceutics ; 14(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35890248

RESUMO

Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.

20.
Bio Protoc ; 12(8): e4391, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35800103

RESUMO

The administration of antiretroviral therapy (ART) leads to a rapid reduction in plasma viral load in HIV-1 seropositive subjects. However, when ART is suspended, the virus rebounds due to the presence of a latent viral reservoir. Several techniques have been developed to characterize this latent viral reservoir. Of the various assay formats available presently, the Tat/Rev induced limiting dilution assay (TILDA) offers the most robust and technically simple assay strategy. The TILDA formats reported thus far are limited by being selective to one or a few HIV-1 genetic subtypes, thus, restricting them from a broader level application. The novel TILDA, labelled as U-TILDA ('U' for universal), can detect all the major genetic subtypes of HIV-1 unbiasedly, and with comparable sensitivity of detection. U-TILDA is well suited to characterize the latent reservoirs of HIV-1 and aid in the formulation of cure strategies. Graphical abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA