Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402205, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158120

RESUMO

Lead halide perovskites are structurally not stable due to their ionic bonds. Using sulfur agents in the crystal growth improves the stability and performance of the photovoltaic and light-emitting devices. In this theoretical work, we use a small toy S-radical in place of A cation in the bulk of lead iodide perovskite, and highlight the significance of the Pb-S covalent-double-bond formation for: the charge redistribution on the neighboring bonds that also turn to be covalent, phase transformation to a stable non-perovskite structure, and superior optoelectronic properties. The chemical analysis was performed with the Quantum Theory of Atoms In Molecules (QTAIM) and Non-Covalent Interactions (NCI) index. Excitonic properties were obtained from the solution of ab initio Bethe-Salpeter equation. Presence of the spin-orbit coupling triggers an interplay between the Frenkel and charge-transfer multiexcitons, switching between the photovoltaic and laser applications. Multiexcitons obey the exciton-fission preconditions.

2.
ACS Appl Mater Interfaces ; 16(33): 43134-43155, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39116407

RESUMO

2D metal halide perovskites (MHPs), mainly the studied Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phases, have gained enormous popularity as optoelectronic materials owing to their self-assembled multiple quantum well structures, tunable semiconducting properties, and improved structural stability compared to their bulk 3D counterparts. The performance of polycrystalline thin film devices is limited due to the formation of defects and trap states. However, as studied so far, single crystal-based devices can provide a better platform to improve device performance and investigate their fundamental properties more reliably. This Review provides the first comprehensive report on the emerging field of RP and DJ perovskite single crystals and their use in visible light photodetectors of varied device configurations. This Review structurally summarizes the 2D MHP single crystal growth methods and the parameters that control the crystal growth process. In addition, the characterization techniques used to investigate their crystal properties are discussed. The review further provides detailed insights into the working mechanisms as well as the operational performance of 2D MHP single crystal photodetector devices. In the end, to outline the present status and future directions, this Review provides a forward-looking perspective concerning the technical challenges and bottlenecks associated with the developing field of RP and DJ perovskite single crystals. Therefore, this timely review will provide a detailed overview of the fast-growing field of 2D MHP single crystal-based photodetectors as well as ignite new concepts for a wide range of applications including solar cells, photocatalysts, solar H2 production, neuromorphic bioelectronics, memory devices, etc.

3.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930231

RESUMO

Hybrid organic-inorganic lead halide perovskites (LHPs) have emerged as a highly significant class of materials due to their tunable and adaptable properties, which make them suitable for a wide range of applications. One of the strategies for tuning and optimizing LHP-based devices is the substitution of cations and/or anions in LHPs. The impact of Cs substitution at the A site on the structural, vibrational, and elastic properties of MAxCs1-xPbCl3-mixed single crystals was investigated using X-ray diffraction (XRD) and Raman and Brillouin light scattering techniques. The XRD results confirmed the successful synthesis of impurity-free single crystals, which exhibited a phase coexistence of dominant cubic and minor orthorhombic symmetries. Raman spectroscopy was used to analyze the vibrational modes associated with the PbCl6 octahedra and the A-site cation movements, thereby revealing the influence of cesium incorporation on the lattice dynamics. Brillouin spectroscopy was employed to investigate the changes in elastic properties resulting from the Cs substitution. The incorporation of Cs cations induced lattice distortions within the inorganic framework, disrupting the hydrogen bonding between the MA cations and PbCl6 octahedra, which in turn affected the elastic constants and the sound velocities. The substitution of the MA cations with smaller Cs cations resulted in a stiffer lattice structure, with the two elastic constants increasing up to a Cs content of 30%. The current findings facilitate a fundamental understanding of mixed lead chloride perovskite materials, providing valuable insights into their structural and vibrational properties.

4.
ACS Appl Mater Interfaces ; 16(27): 35723-35731, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935890

RESUMO

At present, the power conversion efficiency of single-junction perovskite-based solar cells reaches over 26%. The further efficiency increase of perovskite-based optoelectronic devices is limited mainly by defects, causing the nonradiative recombination of charge carriers. To improve efficiency and ensure reproducible fabrication of high-quality layers, it is crucial to understand the perovskite nucleation and growth mechanism along with associated process control to reduce the defect density. In this study, we investigate the growth kinetics of a promising narrow bandgap perovskite, formamidinium methylammonium lead iodide (FAMAPbI3), for high-performance single-junction solar cells. The temporal evolution of structural and optoelectronic properties during FAMAPbI3 vacuum codeposition was inspected in real time by grazing-incidence wide-angle X-ray scattering and photoluminescence. Such a combination of analytical techniques unravels the evolution of intrinsic defect density and layer morphology correlated with lattice strain from the early stages of the perovskite deposition.

5.
ACS Appl Mater Interfaces ; 16(26): 34167-34180, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38896470

RESUMO

Recently emerged lead halide perovskite CsPbX3 (X = Cl, Br, and I) nanocrystals (PNCs) have attracted tremendous attention due to their excellent optical properties. However, the poor water stability, unsatisfactory luminescence efficiency, disappointing lead leakage, and toxicity have restricted their practical applications in photoelectronics and biomedical fields. Herein, a controllable encapsulated strategy is investigated to realize CsPbX3 PNCs/PVP @PMMA composites with superior luminescence properties and excellent biocompatibility. Additionally, the synthesized CsPbBr3 and CsPbBr0.6I2.4 PNCs/PVP@PMMA structures exhibit green and red emissions with a maximal photoluminescence quantum yield (PLQY) of about 70.24% and 98.26%, respectively. These CsPbX3 PNCs/PVP@PMMA structures show high emission efficiency, excellent stability after water storage for 18 months, and low cytotoxicity at the PNC concentration at 500 µg mL-1. Moreover, white light-emitting diode (WLED) devices based on mixtures of CsPbBr3 and CsPbBr0.6I2.4 PNCs/PVP@PMMA perovskite structures are investigated, which exhibit excellent warm-white light emissions at room temperature. A flexible manipulation method is used to fabricate the white light emitters based on these perovskite composites, providing a fantastic platform for fabricating solid-state white light sources and full-color displays.

6.
Adv Sci (Weinh) ; 11(31): e2403691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884160

RESUMO

Quantum technologic and spintronic applications require reliable material platforms that enable significant and long-living spin polarization of excitations, the ability to manipulate it optically in external fields, and the possibility to implement quantum correlations between spins, i.e., entanglement. Here it is demonstrated that these conditions are met in bulk crystals of lead halide perovskites. A giant optical orientation of 85% of excitons, approaching the ultimate limit of unity, in FA0.9Cs0.1PbI2.8Br0.2 crystals is reported. The exciton spin orientation is maintained during the exciton lifetime of 55 ps resulting in high circular polarization of the exciton emission. The optical orientation is robust to detuning of the excitation energy up to 0.3 eV above the exciton resonance and remains larger than 20% up to detunings of 0.9 eV. It evidences pure chiral selection rules and suppressed spin relaxation of electrons and holes, even with large kinetic energies. The exciton and electron-hole recombinations are distinguished by means of the spin dynamics detected via coherent spin quantum beats in magnetic field. Further, electron-hole spin correlations are demonstrated through linear polarization beats after circularly polarized excitation. These findings are supported by atomistic calculations. All-in-all, the results establish lead halide perovskite semiconductors as suitable platform for quantum technologies.

7.
ACS Appl Mater Interfaces ; 16(22): 29132-29140, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783827

RESUMO

Lead halide perovskite nanocrystals (PNCs) have demonstrated great potential in emerging display technologies. However, the practical application of PNCs is hindered by the inherent instability of their ionic surface. Here, we proposed a surface modification approach to enhance the stability of CsPbBr3 PNCs by postsynthetic treatment with aluminum phenylbutyrate (Al(PA)3). Our study reveals that Al(PA)3 displaces ammonium ligands and binds tightly on surface halide, providing excellent air and moisture resistance while preserving a high quantum efficiency of 81.6%. The modified PNCs maintain a constant photoluminescence intensity under continuous UV light illumination for 500 h. Additionally, the Al(PA)3 ligand is compatible with styrene, enabling homogeneous dispersion of PNCs in polystyrene matrices to form bright and uniform PNC-PS thin films. We demonstrated the application of the composite films for display backlighting, which exhibits a wide color gamut of 125% NTSC. The result highlights the potential of AlPA-modified PNCs in light-emitting and other optoelectronic devices.

8.
ACS Nano ; 18(21): 13924-13938, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743703

RESUMO

The all-inorganic halide perovskite CsPbX3 (X = Cl, Br, or I) offers various advantages, such as tunable electronic structure and high carrier mobility. However, its potential application in thermoelectric materials remains underexplored. In this study, we propose a simple yet effective method to synthesize a CsPbX3/Bi0.4Sb1.6Te3 (BST) nanocomposite by sintering a uniformly mixed raw powder. The intrinsic excitation of the BST system is suppressed by exploiting the rich phase structure and tunable electrical transport properties of CsPbX3, and the thermoelectric properties were synergistically optimized. Notably, for CsPbI3, its phase-transition-induced dislocation arrays together with low group velocities drastically reduce thermal conductivity. As a result, the composite achieves an ultrahigh average figure-of-merit (ZT) of 1.4 from 298 to 523 K. The two-pair TE module demonstrates a superior conversion efficiency of 7.3%. This study expands the potential applications of inorganic halide perovskites, into thermoelectrics.

9.
ACS Nano ; 18(23): 15229-15238, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38820532

RESUMO

Photon upconversion via triplet-triplet annihilation (TTA-UC) provides a pathway to overcoming the thermodynamic efficiency limits in single-junction solar cells by allowing the harvesting of sub-bandgap photons. Here, we use mixed halide perovskite nanocrystals (CsPbX3, X = Br/I) as triplet sensitizers, with excitation transfer to 9,10-diphenylanthracene (DPA) and/or 9,10-bis[(triisopropylsilyl)ethynyl]anthracene (TIPS-An) which act as the triplet annihilators. We observe that the upconversion efficiency is five times higher with the combination of both annihilators in a composite system compared to the sum of the individual single-acceptor systems. Our work illustrates the importance of using a composite system of annihilators to enhance TTA upconversion, demonstrated in a perovskite-sensitized system, with promise for a range of potential applications in light-harvesting, biomedical imaging, biosensing, therapeutics, and photocatalysis.

10.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673177

RESUMO

Lead halide perovskites (LHPs) containing organic parts are emerging optoelectronic materials with a wide range of applications thanks to their high optical absorption, carrier mobility, and easy preparation methods. They possess spin-dependent properties, such as strong spin-orbit coupling (SOC), and are promising for spintronics. The Rashba effect in LHPs can be manipulated by a magnetic field and a polarized light field. Considering the surfaces and interfaces of LHPs, light polarization-dependent optoelectronics of LHPs has attracted attention, especially in terms of spin-dependent photocurrents (SDPs). Currently, there are intense efforts being made in the identification and separation of SDPs and spin-to-charge interconversion in LHP. Here, we provide a comprehensive review of second-order nonlinear photocurrents in LHP in regard to spintronics. First, a detailed background on Rashba SOC and its related effects (including the inverse Rashba-Edelstein effect) is given. Subsequently, nonlinear photo-induced effects leading to SDPs are presented. Then, SDPs due to the photo-induced inverse spin Hall effect and the circular photogalvanic effect, together with photocurrent due to the photon drag effect, are compared. This is followed by the main focus of nonlinear photocurrents in LHPs containing organic parts, starting from fundamentals related to spin-dependent optoelectronics. Finally, we conclude with a brief summary and future prospects.

11.
Small ; 20(31): e2400013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38433394

RESUMO

Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.

12.
ACS Nano ; 18(11): 8423-8436, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446635

RESUMO

Nanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs. Here, we report the formation of multicomponent LHP NC-only SLs, i.e., using only CsPbBr3 NCs of different sizes as building blocks. The structural diversity of the obtained SLs encompasses the ABO6, ABO3, and NaCl structure types, all of which contain orientationally and positionally locked NCs. For the selected model system, the ABO6-type SL, we observed efficient NC coupling and Förster-like energy transfer from strongly confined 5.3 nm CsPbBr3 NCs to weakly confined 17.6 nm CsPbBr3 NCs, along with characteristic superfluorescence features at cryogenic temperatures. Spatiotemporal exciton dynamics measurements reveal that binary SLs exhibit enhanced exciton diffusivity compared to single-component NC assemblies across the entire temperature range (from 5 to 298 K). The observed coherent and incoherent NC coupling and controllable excitonic transport within the solid NC SLs hold promise for applications in quantum optoelectronic devices.

13.
ACS Appl Mater Interfaces ; 16(12): 15084-15095, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498384

RESUMO

We utilize room-temperature uniaxial pressing at applied loads achievable with low-cost, laboratory-scale presses to fabricate freestanding CH3NH3PbX3 (X- = Br-, Cl-) polycrystalline ceramics with millimeter thicknesses and optical transparency up to ∼70% in the infrared. As-fabricated perovskite ceramics can be produced with desirable form factors (i.e., size, shape, and thickness) and high-quality surfaces without any postprocessing (e.g., cutting or polishing). This method should be broadly applicable to a large swath of metal halide perovskites, not just the compositions shown here. In addition to fabrication, we analyze microstructure-optical property relationships through detailed experiments (e.g., transmission measurements, electron microscopy, X-ray tomography, optical profilometry, etc.) as well as modeling based on Mie theory. The optical, electrical, and mechanical properties of perovskite polycrystalline ceramics are benchmarked against those of single-crystalline analogues through spectroscopic ellipsometry, Hall measurements, and nanoindentation. Finally, γ-ray scintillation from a transparent MAPbBr3 ceramic is demonstrated under irradiation from a 137Cs source. From a broader perspective, scalable methods to produce freestanding polycrystalline lead halide perovskites with comparable properties to their single-crystal counterparts could enable key advancements in the commercial production of perovskite-based technologies (e.g., direct X-ray/γ-ray detectors, scintillators, and nonlinear optics).

14.
R Soc Open Sci ; 11(1): 230892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298395

RESUMO

Research on lead halide perovskites has demonstrated that they are one of the potential materials for optoelectronic and bio-related applications owing to their promising optical and electronic properties. However, their poor chemical stability in ambient environments is a critical factor that affects their practical applications. Silica is known for its excellent environmental/chemical stability and good optical properties. Therefore, SiO2-coated lead halide perovskites have been studied by introducing the protective layer containing SiO2 to prevent the rapid destruction of their surface chemistry and environmental degradation. It is found that lead halide perovskite core-shell can significantly improve the stability and preserve their high photoluminescence quantum yield. In addition, controlling the shell thickness is also important to produce effective and suitable inorganic halide perovskites core-shell for practical applications. This mini-review discusses the stability, synthesis method and applications of SiO2-coated lead halide perovskite core-shell. Furthermore, the effect of the SiO2 shell thickness on lead halide perovskite core-shell-based applications is also reviewed.

15.
Small Methods ; : e2301617, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368262

RESUMO

The lead iodide (PbI2 ) in lead-halide perovskite (LHP) is both a positive additive for material properties and a site for the formation of device defects. Therefore, atomic-level detection of PbI2 and its derived Pb structures are crucial for understanding the performance and stability of the LHP material. In this work, the atomic imaging of the LHP, PbI2 , and Pb lattices is achieved using low-dose integrated differential phase contrast (iDPC) scanning transmission electron microscopy (STEM). Combining it with the traditional high-angle annular dark field (HAADF)-STEM, the Pb precipitation in different LHPs (CsPbI3 , CsPbBr3, and FAPbI3 ) and under different conditions (light, air, and heat) can be investigated in real space. Then, the features of Pb precipitation (positions and sizes) are visually revealed under different conditions and the stabilities of different LHPs. Meanwhile, the pathway of Pb precipitation is directly imaged and confirmed by the iDPC-STEM during an in situ heating process, supporting the detailed mechanism of Pb precipitation. These results provide the visual evidence for analyzing atomic Pb precipitation in LHPs, which helps better understand the structure-property relation induced by Pb impurity.

16.
ACS Appl Mater Interfaces ; 16(2): 2964-2971, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173093

RESUMO

Chiral lead halide perovskites (LHPs) have been widely investigated in chiroptical spintronics due to their significant Rashba spin-orbit coupling (SOC) and chiral-induced spin selectivity (CISS). Ferromagnet/LHP spinterface stems from the orbital hybridization at the interface of the ferromagnet and the nonmagnetic semiconductor, where interfacial density of state is spin-dependent. By far, the impact of the ferromagnet/chiral LHP spinterface on magneto-photoluminescence (Magneto-PL) of chiral LHPs remains unknown. In this work, we find that the negative and tunable Magneto-PL effects for the pristine LHP bulk film can be drastically enhanced by incorporating ferromagnetic/chiral LHP interfaces. A large Magneto-PL magnitude can reach approximately -13% for the Ni/(S-MBA)2PbI4 interface at the field strengths of ±900 mT. With the assistance of circularly polarized PL spectra, anisotropic magneto-resistance, and X-ray photoelectron spectroscopy measurements, we demonstrate that the ferromagnet/chiral LHP interfaces are chirality/spin-dependent and possess ferromagnetic property due to distinct magnetic switching behavior and electronic orbit coupling at interfaces, which boost the Rashba splitting and spin mixing. The comprehensive effects of Rashba-induced exciton states and chiral-induced SOC at chiral spinterfaces with CISS are responsible for the enhanced Magneto-PL of Ni/(R/S-MBA)2PbI4. It is postulated that the chiral spinterfaces play a dominant role for achieving large and tunable magneto-optical effect of chiral LHPs. This work paves the way for chiroptical spintronic applications.

17.
ACS Nano ; 18(4): 3251-3259, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227818

RESUMO

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and R- and S-[4MeOPEA]2PbBr4, (4MeOPEA = 4-methoxy-α-methylbenzylammonium). The combined experimental and calculated results reveal that the distortion level of PbBr6 octahedra of R- and S-[4MeOPEA]2PbBr4 exhibits an unusually significant reduction as the applied pressure increases, which leads to decreased electron-phonon coupling and self-trapped energy barrier and consequently enables the detrapping of STEs to FEs. This work illustrates the dramatic exciton transfer in 2D LHPs and highlights the potential for realizing highly efficient and pure light emissions by manipulating the structural distortion via strain engineering.

18.
Small ; 20(2): e2306020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661358

RESUMO

To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.


Assuntos
Compostos Inorgânicos , Nanopartículas , Óxidos , Titânio , Humanos , Feminino , Animais , Caenorhabditis elegans , Peixe-Zebra , Compostos de Cálcio/toxicidade , Nanopartículas/toxicidade
19.
Small ; 20(16): e2300935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009504

RESUMO

The optical properties of lead halide perovskite semiconductors in vicinity of the bandgap are controlled by excitons, so that investigation of their fundamental properties is of critical importance. The exciton Landé or g-factor gX is the key parameter, determining the exciton Zeeman spin splitting in magnetic fields. The exciton, electron, and hole carrier g-factors provide information on the band structure, including its anisotropy, and the parameters contributing to the electron and hole effective masses. Here, gX is measured by reflectivity in magnetic fields up to 60 T for lead halide perovskite crystals. The materials band gap energies at a liquid helium temperature vary widely across the visible spectral range from 1.520 up to 3.213 eV in hybrid organic-inorganic and fully inorganic perovskites with different cations and halogens: FA0.9Cs0.1PbI2.8Br0.2, MAPbI3, FAPbBr3, CsPbBr3, and MAPb(Br0.05Cl0.95)3. The exciton g-factors are found to be nearly constant, ranging from +2.3 to +2.7. Thus, the strong dependences of the electron and hole g-factors on the bandgap roughly compensate each other when combining to the exciton g-factor. The same is true for the anisotropies of the carrier g-factors, resulting in a nearly isotropic exciton g-factor. The experimental data are compared favorably with model calculation results.

20.
Adv Mater ; 36(8): e2308672, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051274

RESUMO

The most attractive advantages of all-inorganic cesium lead halide perovskites are their optical gain over broad spectral ranges through the visible spectrum, so are well suited to use in tunable lasers or broadband amplifiers. Most reported anion exchange reactions face a challenge to achieve the desired halogen-variable perovskites due to rapid and uncontrollable reactions and difficulty to synthesize directly. In this study, a simple vapor/solid anion exchange strategy is demonstrated for controlling the reaction process and realizing a wide range tuning of band gap and amplified spontaneous emission (ASE) wavelength, which exhibits a temperature-dependent anion exchange rate. By optimizing the reaction temperature at 90 °C, the ASE wavelength can be linearly manipulated by just controlling the reaction time. A clear quantitative relationship between ASE peak position and reaction time is achieved. Compares with the CsPbClBr2 film obtained via the liquid phase anion exchange method, the fabricated perovskite films obtained by vapor/solid anion exchange technology exhibit superior film quality and enhanced ASE performance. This work may have applications in the future using facile and controllable techniques to develop high-quality full-color visible lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA