Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39121481

RESUMO

Light management (LM) is the key to the encapsulation of high-performance silicon (Si) photovoltaic devices (PVs). In this work, simulation analyses provide meaningful insights into optical losses and guide the improvement of the PV performance of the encapsulated silicon solar cells (Encap-Si SCs). An antireflective layer, textured polydimethylsiloxane (PDMS), is designed to reduce reflection losses, especially at a lower illumination intensity, thereby achieving an improvement of 10.89% in the short-current density (JSC) and hence 12.67% in the power conversion efficiency (PCE) when illuminated at an incident angle of 60°. Subsequently, a luminescence down-shifting material, lead-free Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) double perovskite phosphor, is incorporated into the PDMS film to further enhance the energy yield in the ultraviolet (UV) region. The textured PDMS film with an optimized CANBIC content ultimately achieves a significant improvement in PCE from 21.770 to 23.136%. This enhancement is attributed to the increase in JSC by 2.381 mA/cm2 due to the reduced reflection losses (by antireflective PDMS) and down-converted UV energy (by CANBIC), providing a remarkable advance in LM toward highly efficient encapsulated PVs.

2.
ACS Appl Mater Interfaces ; 16(29): 38260-38268, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39004815

RESUMO

Few-layer transition metal dichalcogenides and perovskites are both promising materials in high-performance optoelectronic devices. Here, we developed a self-driven photodetector by creating a heterojunction between few-layer MoS2 and lead-free perovskite Cs2CuBr4. The detector shows a unique property of very high sensitivity in a broad spectral range of 400 to 800 nm with response speed in a millisecond order. Current-voltage characteristics of the heterojunction device show rectifying behavior, in contrast to the ohmic behavior of the MoS2-based device. The rectifying behavior is attributed to the type II band alignment of the MoS2/Cs2CuBr4 heterojunction. The device shows a broadband (400 to 800 nm) photodetection with very high responsivity reaching up to 2.8 × 104 A/W and detectivity of 1.6 × 1011 Jones at a bias voltage of 3 V. The detector can also operate in self-bias mode with sufficient response. The photocurrent, photoresponsivity, detectivity, and external quantum efficiency of the device are found to be dependent on the illumination power density. The response time of the device is found to be ∼32 and ∼79 ms during the rise and fall of the photocurrent. The work proposes a MoS2/Cs2CuBr4 heterostructure to be a promising candidate for cost-effective, high-performance photodetector.

3.
ACS Appl Mater Interfaces ; 16(30): 40123-40130, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031054

RESUMO

Tow-dimensional (2D) perovskites have invoked extensive interest because of their good stability and intriguing optoelectronic properties. However, in practical applications, the hampered carrier transportation imposed by the vertical array of large dielectric organic cations and the generally seen Fermi level pinning (FLP) effect in conventional metal-2D semiconductors need to be solved urgently. Sb3+/Bi3+-based inorganic lead-free 2D Cs3(M3+)2X9 perovskites (M = Sb3+, Bi3+; X = Cl-, Br-, I-) are promising candidates to replace the toxic 2D hLHP. The contact properties of Cs3Sb2Cl9 with 2D metals are studied in this work to achieve tunable Schottky barrier heights (SBH). Density functional theory calculations reveal a weak FLP factor of 0.91 in the studied junctions, which is beneficial for improving the carrier injection efficiency through electrode design. Calculations of tunneling properties indicate that a Cd3C2 electrode tends to achieve low SBH and high tunneling probability, while a VS2 (H) electrode tends to realize high SBH and low tunneling probability, suggesting that diverse applications of Cs3Sb2Cl9 can be achieved through electrode engineering.

4.
Sci Rep ; 14(1): 16511, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019955

RESUMO

Recent advancements in the efficiency of lead-based halide perovskite solar cells (PSCs), exceeding 25%, have raised concerns about their toxicity and suitability for mass commercialization. As a result, tin-based PSCs have emerged as attractive alternatives. Among diverse types of tin-based PSCs, organic-inorganic metal halide materials, particularly FASnI3 stands out for high efficiency, remarkable stability, low-cost, and straightforward solution-based fabrication process. In this work, we modelled the performance of FASnI3 PSCs with four different hole transporting materials (Spiro-OMeTAD, Cu2O, CuI, and CuSCN) using SCAPS-1D program. Compared to the initial structure of Ag/Spiro-OMeTAD/FASnI3/TiO2/FTO, analysis on current-voltage and quantum efficiency characteristics identified Cu2O as an ideal hole transport material. Optimizing device output involved exploring the thickness of the FASnI3 layer, defect density states, light reflection/transmission at the back and front metal contacts, effects of metal work function, and operational temperature. Maximum performance and high stability have been achieved, where an open-circuit voltage of 1.16 V, and a high short-circuit current density of 31.70 mA/cm2 were obtained. Further study on charge carriers capture cross-section demonstrated a PCE of 32.47% and FF of 88.53% at a selected capture cross-section of electrons and holes of 1022 cm2. This work aims to guide researchers for building and manufacturing perovskite solar cells that are more stable with moderate thickness, more effective, and economically feasible.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39023728

RESUMO

Perovskites are an emerging material with a variety of applications, ranging from their solar light conversion capability to their sensing efficiency. In current study, perovskite nanocrystals (PNCs) were designed using theoretical density functional theory (DFT) analysis. Moreover, the theoretically designed PNCs were fabricated and confirmed by various characterization techniques. The calculated optical bandgap from UV-Vis and fluorescence spectra were 2.15 and 2.05 eV, respectively. The average crystallite size of PNCs calculated from Scherrer equation was 15.18 nm, and point of zero charge (PZC) was obtained at pH 8. The maximum eosin B (EB) removal efficiency by PNCs was 99.56% at optimized conditions following first-order kinetics with 0.98 R2 value. The goodness of the response surface methodology (RSM) model was confirmed from analysis of variance (ANOVA), with the experimental F value (named after Ronald Fisher) of 194.66 being greater than the critical F value F0.05, 14, 14 = 2.48 and a lack of fit value of 0.0587. The Stern-Volmer equation with a larger Ksv value of 1.303710 × 10 6 for Pb2+ suggests its greater sensitivity for Pb2+ among the different metals tested.

6.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893354

RESUMO

Metal halide perovskites have attracted considerable attention as novel optoelectronic materials for their excellent optical and electrical properties. Inorganic perovskites (CsPbX3, X = Cl, Br, I) are now viable alternative candidates for third-generation photovoltaic technology because of their high photoelectric conversion efficiency, high carrier mobility, good defect tolerance, simple preparation method and many other advantages. However, the toxicity of lead is problematic for practical implementation. Thus, the fabrication of lead-free perovskite materials and devices has been actively conducted. In this work, the energy band and photoelectric properties of inorganic perovskites CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) have been investigated with the first principles calculation, and the possible defect energy levels and their formation energies in different components, in particular, have been systematically studied. The advantages and disadvantages of Sn and Ge as replacement elements for Pb have been demonstrated from the perspective of defects. This study provides an important basis for the study of the properties and applications of lead-free perovskites.

7.
Materials (Basel) ; 17(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893794

RESUMO

A series of lead-free Rb2ZrCl6:xTe4+ (x = 0%, 0.1%, 0.5%, 1.0%, 2.0%, 3.0%, 5.0%, 10.0%) perovskite materials were synthesized through a hydrothermal method in this work. The substitution of Te4+ for Zr in Rb2ZrCl6 was investigated to examine the effect of Te4+ doping on the spectral properties of Rb2ZrCl6 and its potential applications. The incorporation of Te4+ induced yellow emission of triplet self-trapped emission (STE). Different luminescence wavelengths were regulated by Te4+ concentration and excitation wavelength, and under a low concentration of Te4+ doping (x ≤ 0.1%), different types of host STE emission and Te4+ triplet state emission could be achieved through various excitation energies. These luminescent properties made it suitable for applications in information encryption. When Te4+ was doped at high concentrations (x ≥ 1%), yellow triplet state emission of Te4+ predominated, resulting in intense yellow emission, which stemmed from strong exciton binding energy and intense electron-phonon coupling. In addition, a Rb2ZrCl6:2%Te4+@RTV scintillating film was fabricated and a spatial resolution of 3.7 lp/mm was achieved, demonstrating the potential applications of Rb2ZrCl6:xTe4+ in nondestructive detection and bioimaging.

8.
Angew Chem Int Ed Engl ; 63(32): e202407193, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744679

RESUMO

As a leading contender to replace lead halide perovskites, tin-based perovskites have demonstrated ever increasing performance in solar cells and light-emitting diodes (LEDs). They tend to be processed with dimethyl sulfoxide (DMSO) solvent, which has been identified as a major contributor to the Sn(II) oxidation during film fabrication, posing a challenge to the further improvement of Sn-based perovskites. Herein, we use NMR spectroscopy to investigate the kinetics of the oxidation of SnI2, revealing that autoamplification takes place, accelerating the oxidation as the reaction progresses. We propose a mechanism consistent with these observations involving water participation and HI generation. Building upon these insights, we have developed low-temperature Sn-based perovskite LEDs (PeLEDs) processed at 60 °C, achieving enhanced external quantum efficiencies (EQEs). Our research underscores the substantial potential of low-temperature DMSO solvent processes and DMSO-free solvent systems for fabricating oxidation-free Sn-based perovskites, shaping the future direction in processing Sn-containing perovskite materials and optoelectronic devices.

9.
Angew Chem Int Ed Engl ; 63(30): e202404067, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38729916

RESUMO

Conventional photovoltaic (PV)-photodetectors are hard to detect fainted signals, while photomultiplication (PM)-capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead-free Cs3Cu2I5 nanocrystals with self-trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer-by-layer heterojunction structure, and corresponding organic photodetectors with bias-switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 µs, large bandwidth over 0.2 MHz and long-term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias-switchable multi-functional organic optoelectrical applications.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38608287

RESUMO

Copper (Cu)-based perovskites are promising for lead-free perovskite light-emitting diodes (PeLEDs). However, it remains a significant challenge to achieve high performance devices due to the nonradiative loss caused by the disordered crystallization and lack of passivation. Crown ethers are known to form host-guest complexes by the interaction between C-O-C groups and certain cations, and 18-crown-6 (18C6) with an appropriate complementary size can interact with Cs+ and Cu+ cations. Herein, we studied the interaction between CsCu2I3 and two crowns with the same cyclic size, 18C6 and dibenzo-18-crown-6 (D18C6). Particularly, D18C6 can reduce the nonradiative recombination rate of CsCu2I3 film by passivating the defects and optimizing the film morphology effectively. The room mean square (RMS) decreased from 5.06 to 2.95 nm, and the PLQY was promoted from 4.71% to 19.9%. Besides, D18C6 can also decrease the barrier of hole injection. The PeLEDs based on D18C6-modified CsCu2I3 realized noticeable improvement with a maximum luminance and EQE of 583 cd/m2 and 0.662%, respectively.

11.
Chemosphere ; 355: 141879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570050

RESUMO

The use of emerging composite materials has been booming to remove environmental pollutants. The aim of this research is to develop a new composite based on Cs3Bi2Cl9 perovskite and graphitic carbon nitride (g-C3N4) to investigate the photocatalytic performance under visible light irradiation. To achieve this, we produce the Cs3Bi2Cl9/g-C3N4 heterojunctions through a simple self-assembly synthesis. The as-synthesized composites are characterized using XRD, FTIR, FESEM, TEM, BET and EDX techniques. The photocatalytic performance of Cs3Bi2Cl9/g-C3N4 is examined in the degradation of various water contaminants, including 4-nitrophenol (4-NP), tetracycline antibiotic (TC), methylene blue (MB) and methyl orange (MO). The experimental results indicate the superior photocatalytic performance of the composites in the degradation of pollutants compared to pure Cs3Bi2Cl9 and g-C3N4. The 10% Cs3Bi2Cl9/g-C3N4 composite achieves the optimal degradation efficiency of 100, 92, 98.7, and 85.1% of 4-NP, TC, MB, and MO, respectively. This superior photocatalytic activity attributes to improved optical and electrochemical properties, including enhanced absorption ability, narrowing band gap, promoted separation efficiency of photogenerated carriers, and a high redox potential, which is confirmed by UV-vis DRS, PL, EIS, and CV analyses. The 10% Cs3Bi2Cl9/g-C3N4 composite also demonstrates high photocatalytic stability after four consecutive cycles. Radical trapping tests show that superoxide radicals (•O2-), holes (h+), and hydroxyl radicals (•OH) contribute to the photocatalytic process. Based on the obtained data, a direct Z-scheme heterojunction mechanism is proposed. Overall, this research offers a new stable photocatalyst with excellent prospect for photocatalytic applications.


Assuntos
Compostos Azo , Poluentes Ambientais , Água , Cinética , Física , Azul de Metileno
12.
ACS Appl Mater Interfaces ; 16(15): 19175-19183, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573052

RESUMO

Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.

13.
Adv Mater ; 36(24): e2313252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445772

RESUMO

The development of random lasing (RL) with predictable and controlled properties is an important step to make these cheap optical sources stable and reliable. However, the design of tailored RL characteristics (emission energy, threshold, number of modes) is only obtained with complex photonic structures, while the simplest optical configurations able to tune the RL are still a challenge. This work demonstrates the tuning of the RL characteristics in spin-coated and inkjet-printed tin-based perovskites integrated into a vertical cavity with low quality factor. When the cavity mode is resonant with the photoluminescence (PL) peak energy, standard vertical lasing is observed. More importantly, single mode RL operation with the lowest threshold and a quality factor as high as 1 000 (twenty times the quality factor of the resonator) is obtained if the cavity mode lies above the PL peak energy due to higher gain. These results can have important technological implications toward the development of low-cost RL sources without chaotic behavior.

14.
Small ; 20(25): e2309926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196153

RESUMO

As one type of recent emerging lead-free perovskites, Cs2ZrCl6 nanocrystals are widely concerned, benefiting from the eminent designability, high X-ray cutoff efficiency, and favorable stability. Improving the luminescence performance of Cs2ZrCl6 nanocrystals has great importance to cater for practical applications. In view of the surface defects frequently formed by the liquid phase method, the particle morphology and surface quality of this material are expected to be regulated if certain intervention is made in the synthesis process. In the work, differing from normal cell lattice modulation based on the ion doping, the grain size and surface morphology of Cs2ZrCl6 nanocrystals are optimized via adding a certain amount of InCl3 to the synthetic solution. The surface defects are restored to inhibit the defect-induced non-radiative transition, resulting in the improvement of the luminescence properties. Moreover, a flexible Cs2ZrCl6@polydimethylsiloxane film with excellent heat, water, and bending resistance and a light-emitting diode (LED) device are fabricated, exhibiting excellent application potential for X-ray imaging and blue LED.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38200193

RESUMO

In the face of mounting environmental concerns, we must seek out innovative solutions for remediation. Using nanomaterials to degrade organic pollutants in water under ambient visible light holds great promise as a safe, cost-efficient, and effective approach to addressing pollution in our water bodies. The development of novel materials capable of such pollution degradation is desired to preserve the environment. In this study, Bi0.5Na0.5TiO3 (BNT) nanoparticles are synthesized through hydrothermal and solid-state routes, and their physicochemical properties are compared to assess their photocatalytic performance. The results of the characterization studies indicate that the hydrothermally synthesized nanoparticles outperformed the solid-state synthesized counterparts in terms of photocatalytic performance. The photocatalytic degradation of Rhodamine blue dye under ambient light exposure is examined at various dye concentrations and catalyst dosages. BNT nanoparticles demonstrated excellent photocatalytic properties, stability, and recyclability, making them a promising candidate for various photocatalytic applications. The findings of this study could pave the way for the development of sustainable and environmentally friendly photocatalytic technologies for water remediation.

16.
Small Methods ; 8(2): e2300421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37350508

RESUMO

Organic-inorganic hybrid perovskite solar cells (PSCs) have achieved an impressive certified efficiency of 25.7%, which is comparatively higher than that of commercial silicon solar cells (23.3%), showing great potential toward commercialization. However, the low stability and high toxicity due to the presence of volatile organic components and toxic metal lead in the perovskites pose significant challenges. To obtain robust and low-toxicity PSCs, substituting organic cations with pure inorganic cations, and partially or fully replacing the toxic Pb with environmentally benign metals, is one of the promising methods. To date, continuous efforts have been made toward the construction of highly performed low-toxicity inorganic PSCs with astonishing breakthroughs. This review article provides an overview of recent progress in inorganic PSCs in terms of lead-reduced and lead-free compositions. The physical properties of poor-lead all-inorganic perovskites are discussed to unveil the major challenges in this field. Then, it reports notable achievements for the experimental studies to date to figure out feasible methods for efficient and stable poor-lead all-inorganic PSCs. Finally, a discussion of the challenges and prospects for poor-lead all-inorganic PSCs in the future is presented.

17.
Adv Mater ; 36(2): e2307326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849381

RESUMO

Perovskites field-effect transistors (PeFETs) have been intensively investigated for their application in detector and synapse. However, synapse based on PeFETs is still very difficult to integrate excellent charge carrier transporting ability, photosensitivity, and nonvolatile memory effects into one device, which is very important for developing bionic electronic devices and edge computing. Here, two-dimensional (2D) perovskites are synthesized by incorporating fused π-conjugated pyrene-O-ethyl-ammonium (POE) ligands and a systematic study is conducted to obtain enhanced performance and reliable PeFETs. The optimized (POE)2 SnI4 transistors display the hole mobility over 0.3 cm2  V-1  s-1 , high repeatability, and operational stability. Meanwhile, the derived photo memory devices show remarkable photoresponse, with a switching ratio higher than 105 , high visible light responsivity (>4 × 104  A W-1 ), and stable storage-erase cycles, as well as competitive retention performance (104  s). The photoinduced memory behavior can be benefiting from the insulating nature of quantum-well in 2D perovskite under dark and its excellent light sensitivity. The excellent photo memory behaviors have been maintained after 40 days in a N2 atmosphere. Finally, a 2D perovskite-only transistors with a multi-level memory behavior (16 distinct states) is described by controlling incident light pulse. This work provides broader attention toward 2D perovskite and optoelectronic application.

18.
Small ; 20(12): e2307025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941475

RESUMO

Severe nonradiative recombination and open-circuit voltage loss triggered by high-density interface defects greatly restrict the continuous improvement of Sn-based perovskite solar cells (Sn-PVSCs). Herein, a novel amphoteric semiconductor, O-pivaloylhydroxylammonium trifluoromethanesulfonate (PHAAT), is developed to manage interface defects and carrier dynamics of Sn-PVSCs. The amphiphilic ionic modulators containing multiple Lewis-base functional groups can synergistically passivate anionic and cationic defects while coordinating with uncoordinated Sn2+ to compensate for surface charge and alleviate the Sn2+ oxidation. Especially, the sulfonate anions raise the energy barrier of surface oxidation, relieve lattice distortion, and inhibit nonradiative recombination by passivating Sn-related and I-related deep-level defects. Furthermore, the strong coupling between PHAAT and Sn perovskite induces the transition of the surface electronic state from p-type to n-type, thus creating an extra back-surface field to accelerate electron extraction. Consequently, the PHAAT-treated device exhibits a champion efficiency of 13.94% with negligible hysteresis. The device without any encapsulation maintains 94.7% of its initial PCE after 2000 h of storage and 91.6% of its initial PCE after 1000 h of continuous illumination. This work provides a reliable strategy to passivate interface defects and construct p-n homojunction to realize efficient and stable Sn-based perovskite photovoltaic devices.

19.
Adv Sci (Weinh) ; 11(6): e2307543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070176

RESUMO

In order to deal with the global energy crisis and environmental problems, reducing carbon dioxide through artificial photosynthesis has become a hot topic. Lead halide perovskite is attracted people's attention because of its excellent photoelectric properties, but the toxicity and long-term instability prompt people to search for new photocatalysts. Herein, a series of <111> inorganic double perovskites Cs4 Mn1-x Cux Sb2 Cl12 microcrystals (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) are synthesized and characterized. Among them, Cs4 Mn0.7 Cu0.3 Sb2 Cl12 microcrystals have the best photocatalytic performance, and the yields of CO and CH4 are 503.86 and 68.35 µmol g-1 , respectively, after 3 h irradiation, which are the highest among pure phase perovskites reported so far. In addition, in situ Fourier transform infrared (FT-IR) spectroscopy and electron spin resonance (ESR) spectroscopy are used to explore the mechanism of the photocatalytic reaction. The results highlight the potential of this class of materials for photocatalytic reduction reactions.

20.
Small ; 20(15): e2306600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009782

RESUMO

2D Bi2O2Se has recently garnered significant attention in the electronics and optoelectronics fields due to its remarkable photosensitivity, broad spectral absorption, and excellent long-term environmental stability. However, the development of integrated Bi2O2Se photodetector with high performance and low-power consumption is limited by material synthesis method and the inherent high carrier concentration of Bi2O2Se. Here, a type-I heterojunction is presented, comprising 2D Bi2O2Se and lead-free bismuth perovskite CsBi3I10, for fast response and broadband detection. Through effective charge transfer and strong coupling effect at the interfaces of Bi2O2Se and CsBi3I10, the response time is accelerated to 4.1 µs, and the detection range is expanded from ultraviolet to near-infrared spectral regions (365-1500 nm). The as-fabricated photodetector exhibits a responsivity of 48.63 AW-1 and a detectivity of 1.22×1012 Jones at 808 nm. Moreover, efficient modulation of the dominant photocurrent generation mechanism from photoconductive to photogating effect leads to sensitive response exceeding 103 AW-1 for heterojunction-based photo field effect transistor (photo-FETs). Utilizing the large-scale growth of both Bi2O2Se and CsBi3I10, the as-fabricated integrated photodetector array demonstrates outstanding homogeneity and stability of photo-response performance. The proposed 2D Bi2O2Se/CsBi3I10 perovskite heterojunction holds promising prospects for the future-generation photodetector arrays and integrated optoelectronic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA