Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; : 104177, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173848

RESUMO

Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is the most destructive pest, causing severe damage to mulberry production in China's sericulture industry. The insecticide application in mulberry orchards poses a significant risk of poisoning to Bombyx mori. Shifting from insecticides to odor attractants is a beneficial alternative, but not much data is available on the olfactory system of G. pyloalis. We identified 114 chemosensory genes from the antennal transcriptome database of G. pyloalis, with 18 odorant-binding protein (OBP) and 17 chemosensory protein (CSP) genes notably expressed in the antennae. Ligand-binding assays for two antennae-biased expressed general odorant-binding proteins (GOBPs) showed high binding affinities of GOBP1 to hexadecanal, ß-ionone, and 2-ethylhexyl acrylate, while GOBP2 exhibited binding to 4-tert-octylphenol, benzyl benzoate, ß-ionone, and farnesol. Computational simulations indicated that van der Waal forces predominantly contributed to the binding free energy in the binding processes of complexes. Among them, Phe12 of GOBP1 and Phe19 of GOBP2 were demonstrated to play crucial roles in their bindings to plant volatiles using site-directed mutagenesis experiments. Moreover, hexadecanal and ß-ionone attracted G. pyloalis male moths in the behavioral assays, while none of the candidate plant volatiles significantly affected female moths. Our findings provide a comprehensive understanding of the molecular mechanisms underlying olfactory recognition in G. pyloalis, setting the groundwork for novel mulberry pests control strategies based on insect olfaction.

2.
Int J Biol Macromol ; 278(Pt 2): 134811, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153681

RESUMO

Odorant binding proteins (OBPs) are involved in odorant discrimination and act as the first filter in the peripheral olfactory system. Previous studies have shown that BhorOBP29 is potentially involved in olfactory perception in an important wood-boring pest Batocera horsfieldi (Hope) (Coleoptera: Cerambycidae), however, its function remains unclear. Here, we investigated the ligand-binding profiles of recombinant BhorOBP29 with 22 compounds from its host plant using fluorescence competitive binding assays and fluorescence quenching assays. The results showed that BhorOBP29 could bind to five ligands relying mainly on hydrophobic interactions. Molecular docking analysis indicated that residues Ile48, Leu51, Met52, Trp57, Asn105, and Val119 were extensively involved in the interactions between BhorOBP29 and the five ligands. Furthermore, the site-directed mutagenesis analysis revealed that Leu51 and Met52 residues were indispensable for BhorOBP29-ligands binding. Finally, electroantennogram (EAG) assays confirmed that hexanal, (-)-limonene, and 2-methylbutyraldehyde elicited a concentration-dependent EAG response with a maximum at the concentration of 1/10 v/v. These findings suggest that BhorOBP29 may play a significant role in the perception of host plant volatiles by B. horsfieldi. This study may help to discover novel behavioral regulation and environmentally friendly strategies for controlling B. horsfieldi in the future.

3.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125806

RESUMO

Cytochrome c (CytC), a one-electron carrier, transfers electrons from complex bc1 to cytochrome c oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex bc1 and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation. All mutants showed a 4-6 times increased peroxidase activity and accelerated binding of cyanide to the ferric heme of CytC. In contrast, decomposition of the cyanide complex with ferrous CytC, as monitored by magnetic circular dichroism spectroscopy, was slower in mutants compared to WT. Molecular dynamic simulations revealed the increase in the fluctuations of Cα atoms of individual residues of mutant CytC compared to WT, especially in the Ω-loop (70-85), which can cause destabilization of the Fe…S(Met80) coordination link, facilitation of the binding of exogenous ligands cyanide and peroxide, and an increase in peroxidase activity. It was found that only one substitution K72E is enough to induce all these changes, indicating the significance of K72 and the Ω-loop (70-85) for the structure and physiology of mitochondrial CytC. In this work, we also propose using a ferro-ferricyanide buffer as a substrate to monitor the peroxidase activity of CytC. This new approach allows us to determine the rate of peroxidase activity at moderate (200 µM) concentrations of H2O2 and avoid complications of radical formation during the reaction.


Assuntos
Citocromos c , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligantes , Citocromos c/metabolismo , Citocromos c/química , Citocromos c/genética , Peroxidase/metabolismo , Peroxidase/química , Peroxidase/genética , Substituição de Aminoácidos , Ligação Proteica , Cianetos/metabolismo , Cianetos/química , Animais , Heme/metabolismo , Heme/química , Mutação
4.
J Struct Biol ; 216(3): 108113, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079583

RESUMO

Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 µM) was observed in presence of 100 µM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ± 20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ± 2 % to 90 ± 4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 58 ± 29 µM.

5.
J Chromatogr A ; 1730: 465141, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986402

RESUMO

Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.


Assuntos
Aptâmeros de Nucleotídeos , PPAR gama , PPAR gama/química , PPAR gama/metabolismo , Ligantes , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Ligação Proteica , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Humanos , Calorimetria
6.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 620-628, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052318

RESUMO

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.


Assuntos
Proteases 3C de Coronavírus , Cristalografia por Raios X/métodos , Proteases 3C de Coronavírus/química , SARS-CoV-2/química , Cristalização/métodos , Temperatura , Modelos Moleculares , Conformação Proteica , Humanos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Plantas
7.
Cell Syst ; 15(7): 628-638.e8, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38981486

RESUMO

In uncertain environments, phenotypic diversity can be advantageous for survival. However, as the environmental uncertainty decreases, the relative advantage of having diverse phenotypes decreases. Here, we show how populations of E. coli integrate multiple chemical signals to adjust sensory diversity in response to changes in the prevalence of each ligand in the environment. Measuring kinase activity in single cells, we quantified the sensitivity distribution to various chemoattractants in different mixtures of background stimuli. We found that when ligands bind uncompetitively, the population tunes sensory diversity to each signal independently, decreasing diversity when the signal's ambient concentration increases. However, among competitive ligands, the population can only decrease sensory diversity one ligand at a time. Mathematical modeling suggests that sensory diversity tuning benefits E. coli populations by modulating how many cells are committed to tracking each signal proportionally as their prevalence changes.


Assuntos
Quimiotaxia , Escherichia coli , Transdução de Sinais , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Quimiotaxia/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fatores Quimiotáticos/metabolismo
8.
Pharmacol Res Perspect ; 12(4): e1223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031734

RESUMO

Fluorescent ligands have proved to be powerful tools in the study of G protein-coupled receptors in living cells. Here we have characterized a new fluorescent ligand PSB603-BY630 that has high selectivity for the human adenosine A2B receptor (A2BR). The A2BR appears to play an important role in regulating immune responses in the tumor microenvironment. Here we have used PSB603-BY630 to monitor specific binding to A2BRs in M1- and M2-like macrophages derived from CD14+ human monocytes. PSB603-BY630 bound with high affinity (18.3 nM) to nanoluciferase-tagged A2BRs stably expressed in HEK293G cells. The ligand exhibited very high selectivity for the A2BR with negligible specific-binding detected at NLuc-A2AR, NLuc-A1R, or NLuc-A3R receptors at concentrations up to 500 nM. Competition binding studies showed the expected pharmacology at A2BR with the A2BR-selective ligands PSB603 and MRS-1706 demonstrating potent inhibition of the specific binding of 50 nM PSB603-BY630 to A2BR. Functional studies in HEK293G cells using Glosensor to monitor Gs-coupled cyclic AMP responses indicated that PSB603-BY630 acted as a negative allosteric regular of the agonist responses to BAY 60-6583. Furthermore, flow cytometry analysis confirmed that PSB603-BY630 could be used to selectively label endogenous A2BRs expressed on human macrophages. This ligand should be an important addition to the library of fluorescent ligands which are selective for the different adenosine receptor subtypes, and will enable study of the role of A2BRs on immune cells in the tumor microenvironment.


Assuntos
Corantes Fluorescentes , Macrófagos , Receptor A2B de Adenosina , Humanos , Células HEK293 , Receptor A2B de Adenosina/metabolismo , Ligantes , Corantes Fluorescentes/química , Macrófagos/metabolismo , Macrófagos/imunologia , Ligação Competitiva , Antagonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia
9.
Int J Biol Macromol ; 276(Pt 2): 133973, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032877

RESUMO

The protein-ligand binding frequently occurs in living organisms and plays a crucial role in the execution of the functions of proteins and drugs. It is also an indispensable part of drug discovery and screening. While the methods for investigating protein-ligand binding are diverse, each has its own objectives, strengths, and limitations, which all influence the choice of method. Many studies concentrate on one or a few specific methods, suggesting that comprehensive summaries are lacking. Therefore in this review, these methods are comprehensively summarized and are discussed in detail: prediction and simulation methods, thermal and thermodynamic methods, spectroscopic methods, methods of determining three-dimensional structures of the complex, mass spectrometry-based methods and others. It is also important to integrate these methods based on the specific objectives of the research. With the aim of advancing pharmaceutical research, this review seeks to deepen the understanding of the protein-ligand binding process.


Assuntos
Ligação Proteica , Proteínas , Termodinâmica , Ligantes , Proteínas/química , Proteínas/metabolismo , Fenômenos Biofísicos , Biofísica/métodos , Espectrometria de Massas , Humanos
10.
J Biol Chem ; 300(9): 107606, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059491

RESUMO

Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways. Using solution NMR fragment screening, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the transforming acidic coiled-coil containing protein 3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, molecular dynamics simulations, and ensemble docking to identify ligand-binding "hotspots" on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/transforming acidic coiled-coil containing protein 3 inhibitors, KG-548 and KG-655, bind to a ß-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the ß-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.

11.
J Agric Food Chem ; 72(31): 17248-17259, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051932

RESUMO

Apriona germari (Hope) presents a significant threat as a dangerous wood-boring pest, inflicting substantial harm to forest trees. Investigating the olfactory sensory system of A. germari holds substantial theoretical promise for developing eco-friendly control strategies. To date, however, the olfactory perception mechanism in A. germari remains largely unknown. Therefore, we performed transcriptome sequencing of A. germari across four distinct body parts: antennae, foreleg tarsal segments, mouthparts (maxillary and labial palps), and abdomen terminals, pinpointing the odorant binding protein (OBP) genes and analyzing their expression. We found eight AgerOBPs (5, 19, 23, 25, 29, 59, 63, 70) highly expressed in the antennae. In our competitive binding experiments, AgerOBP23 showed strong binding abilities to the pheromone component fuscumol acetate, eight plant volatiles (farnesol, cis-3-hexenal, nerolidol, myristol acetate, cis-3-hexenyl benzoate, (-)-α-cedrene, 3-ethylacetophenone, and decane), and four insecticides (chlorpyrifos, phoxim, indoxacarb, and cypermethrin). However, AgerOBP29 and AgerOBP63 did not show prominent binding activities to these tested chemicals. Through homology modeling and molecular docking, we identified the key amino acid sites involved in the binding process of AgerOBP23 to these ligands, which shed light on the molecular interactions underlying its binding specificity. Our study suggests that AgerOBP23 may serve as a potential target for future investigations of AgerOBP ligand binding. This approach is consistent with the reverse chemical ecology principle, establishing the groundwork for future studies focusing on attractant or repellent development by exploring further the molecular interactions between OBP and various compounds.


Assuntos
Proteínas de Insetos , Receptores Odorantes , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Animais , Simulação de Acoplamento Molecular , Filogenia , Feromônios/metabolismo , Feromônios/química
12.
J Agric Food Chem ; 72(31): 17617-17625, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052973

RESUMO

Odorant receptors (ORs) play a crucial role in insect chemoreception. Here, a female-biased odorant receptor MmedOR48 in parasitoid Microplitis mediator was fully functionally characterized. The qPCR analysis suggested that the expression level of MmedOR48 increased significantly after adult emergence and was expressed much more in the antennae. Moreover, an in situ hybridization assay showed MmedOR48 was extensively located in the olfactory sensory neurons. In two-electrode voltage clamp recordings, recombinant MmedOR48 was broadly tuned to 23 kinds of volatiles, among which five plant aldehyde volatiles excited the strongest current recording values. Subsequent molecular docking analysis coupled with site-directed mutagenesis demonstrated that key amino acid residues Thr142, Gln80, Gln282, and Thr312 together formed the binding site in the active pocket for the typical aldehyde ligands. Furthermore, ligands of MmedOR48 could stimulate electrophysiological activities in female adults of the M. mediator. The main aldehyde ligand, nonanal, aroused significant behavioral preference of M. mediator in females than in males. These findings suggest that MmedOR48 may be involved in the recognition of plant volatiles in M. mediator, which provides valuable insight into understanding the olfactory mechanisms of parasitoids.


Assuntos
Proteínas de Insetos , Receptores Odorantes , Compostos Orgânicos Voláteis , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Feminino , Animais , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Masculino , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Vespas/química , Vespas/fisiologia , Vespas/metabolismo , Simulação de Acoplamento Molecular , Plantas/parasitologia , Plantas/química , Plantas/metabolismo
13.
J Biol Chem ; : 107613, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079629

RESUMO

Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein IpaD. Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.

14.
R Soc Open Sci ; 11(7): 240487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050724

RESUMO

A fundamental mistake in receptor theory has led to an enduring misunderstanding of how to estimate the affinity and efficacy of an agonist. These properties are inextricably linked and cannot be easily separated in any case where the binding of a ligand induces a conformation change in its receptor. Consequently, binding curves and concentration-response relationships for receptor agonists have no straightforward interpretation. This problem-the affinity-efficacy problem-remains overlooked and misunderstood despite it being recognized in 1987. To avoid the further propagation of this misunderstanding, we propose in this review that the affinity-efficacy problem should be included in the core curricula for pharmacology undergraduates proposed by the British Pharmacological Society and the International Union of Basic and Clinical Pharmacology (IUPHAR).

15.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2070-2086, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044576

RESUMO

The binding of proteins and ligands is a crucial aspect of life processes. The calculation of the protein-ligand binding affinity (PLBA) offers valuable insights into protein function, drug screening targets protein receptors, and enzyme modifications. In recent years, artificial intelligence (AI) has experienced rapid advancements, becoming widely used in PLBA prediction. This is attributed to its robust feature extraction ability, superior algorithm accuracy, and speedy calculations. Our paper aims to provide a comprehensive overview of AI predication process, associated resources, application scenarios, challenges, and potential solutions, serving as a valuable reference for the relevant research endeavors.


Assuntos
Algoritmos , Inteligência Artificial , Ligação Proteica , Proteínas , Ligantes , Proteínas/metabolismo , Proteínas/química
16.
AAPS J ; 26(5): 88, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085624

RESUMO

Duplicate analysis has been a conventional practice in the industry for ligand-binding assays (LBA), particularly for plate-based platforms like Enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) assays. Recent whitepapers and guidance have opened a door to exploring the implementation of single-well (singlicate) analysis approach for LBAs. Although the bioanalytical industry has actively investigated the suitability of singlicate analysis, applications in supporting regulated LBA bioanalysis are limited. The primary reason for this limitation is the absence of appropriate strategy to facilitate the transition from duplicate to singlicate analysis. In this paper we present the first case study with our data-driven approach to implement singlicate analysis in a clinical pharmacokinetics (PK) plate based LBA assay with ISR data. The central aspect of this strategy is a head-to-head comparison with Precision and Accuracy assessment in both duplicate and singlicate formats as the initial stage of assay validation. Subsequently, statistical analysis is conducted to evaluate method variability in both precision and accuracy. The results of our study indicated that there was no impactful difference between duplicate vs singlicate, affirming the suitability of singlicate analysis for the remaining steps of PK assay validation. The validation results obtained through singlicate analysis demonstrated acceptable assay performance characteristics across all validation parameters, aligning with regulatory guidance. The validated PK assay in singlicate has been employed to support a Phase I study. The appropriateness of singlicate analyses is further supported by initial Incurred Sample Reanalysis (ISR) data in which 90.1% of ISR samples fall within the acceptable criteria.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ligantes , Humanos , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática/métodos , Farmacocinética
17.
BMC Chem ; 18(1): 108, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831341

RESUMO

Determination of protein-ligand binding affinity (PLA) is a key technological tool in hit discovery and lead optimization, which is critical to the drug development process. PLA can be determined directly by experimental methods, but it is time-consuming and costly. In recent years, deep learning has been widely applied to PLA prediction, the key of which lies in the comprehensive and accurate representation of proteins and ligands. In this study, we proposed a multi-modal deep learning model based on the early fusion strategy, called DeepLIP, to improve PLA prediction by integrating multi-level information, and further used it for virtual screening of extracellular signal-regulated protein kinase 2 (ERK2), an ideal target for cancer treatment. Experimental results from model evaluation showed that DeepLIP achieved superior performance compared to state-of-the-art methods on the widely used benchmark dataset. In addition, by combining previously developed machine learning models and molecular dynamics simulation, we screened three novel hits from a drug-like natural product library. These compounds not only had favorable physicochemical properties, but also bound stably to the target protein. We believe they have the potential to serve as starting molecules for the development of ERK2 inhibitors.

18.
Mol Pharm ; 21(7): 3256-3267, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856975

RESUMO

Prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer cells can serve as a target for imaging and radioligand therapy (RLT). Previously, [68Ga]Ga-P16-093, containing a Ga(III) chelator, N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), displayed excellent PSMA-targeting properties and showed a high tumor uptake and retention useful for diagnosis in prostate cancer patients. Recently, [177Lu]Lu-PSMA-617 has been approved by the U.S. food and drug administration (FDA) for the treatment of prostate cancer patients. Derivatives of PSMA-093 using AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), as the chelator, were designed as alternative agents forming complexes with both diagnostic and therapeutic radiometals, such as gallium-68 (log K = 22.18) or lutetium-177 (log K = 21.85). The aim of this study is to evaluate AAZTA-Gly-O-(methylcarboxy)-Tyr-Phe-Lys-NH-CO-NH-Glu (designated as AZ-093, 1) leading to a gallium-68/lutetium-177 theranostic pair as potential PSMA targeting agents. Synthesis of the desired precursor, AZ-093, 1, was effectively accomplished. Labeling with either [68Ga]GaCl3 or [177Lu]LuCl3 in a sodium acetate buffer solution (pH 4-5) at 50 °C in 5 to 15 min produced either [68Ga]Ga-1 or [177Lu]Lu-1 with high yields and excellent radiochemical purities. Results of in vitro binding studies, cell uptake, and retention (using PSMA-positive prostate carcinoma cells line, 22Rv1-FOLH1-oe) were comparable to that of [68Ga]Ga-P16-093 and [177Lu]Lu-PSMA-617, respectively. Specific cellular uptake was determined with or without the competitive blocking agent (2 µM of "cold" PSMA-11). Cellular binding and internalization showed a time-dependent increase over 2 h at 37 °C in the PSMA-positive cells. The cell uptakes were completely blocked by the "cold" PSMA-11 suggesting that they are competing for the same PSMA binding sites. In the mouse model with implanted PSMA-positive tumor cells, both [68Ga]Ga-1 and [177Lu]Lu-1 displayed excellent uptake and retention in the tumor. Results indicate that [68Ga]Ga/[177Lu]Lu-1 (68Ga]Ga/[177Lu]Lu-AZ-093) is potentially useful as PSMA-targeting agent for both diagnosis and radiotherapy of prostate cancer.


Assuntos
Antígenos de Superfície , Radioisótopos de Gálio , Glutamato Carboxipeptidase II , Lutécio , Neoplasias da Próstata , Compostos Radiofarmacêuticos , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Lutécio/química , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/farmacocinética , Glutamato Carboxipeptidase II/metabolismo , Glutamato Carboxipeptidase II/antagonistas & inibidores , Linhagem Celular Tumoral , Radioisótopos/química , Animais , Quelantes/química , Antígeno Prostático Específico/metabolismo , Distribuição Tecidual , Camundongos , Ácido Edético/análogos & derivados , Ácido Edético/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
19.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928329

RESUMO

Vitamin D is a group of seco-steroidal fat-soluble compounds. The two basic forms, vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol), do not have biological activity. They are converted in the body by a two-step enzymatic hydroxylation into biologically active forms, 1α,25-dihydroxyvitamin D2 [ercalcitriol, 1,25(OH)2D2] and 1α,25-dihydroxyvitamin D3 [calcitriol, 1,25(OH)2D3], which act as classical steroid hormones. 1,25(OH)2D3 exerts most of its physiological functions by binding to the nuclear vitamin D receptor (VDR), which is present in most body tissues to provide support to a broad range of physiological processes. Vitamin D-liganded VDR controls the expression of many genes. High levels of 1,25(OH)2D3 cause an increase in calcium in the blood, which can lead to harmful hypercalcemia. Several analogs of 1,25(OH)2D3 and 1,25(OH)2D2 have been designed and synthesized with the aim of developing compounds that have a specific therapeutic function, for example, with potent anticancer activity and a reduced toxic calcemic effect. Particular structural modifications to vitamin D analogs have led to increased anticancer activity and reduced calcemic action with the prospect of extending work to provide future innovative therapies.


Assuntos
Antineoplásicos , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Calcitriol/farmacologia , Calcitriol/análogos & derivados , Calcitriol/química , Relação Estrutura-Atividade , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/química
20.
Lipids Health Dis ; 23(1): 182, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867270

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a common inherited metabolic disease that causes premature atherosclerosis, cardiovascular disease, and even death at a young age. Approximately 95% of FH-causing genetic variants that have been identified are in the LDLR gene. However, only 10% of the FH population worldwide has been diagnosed and adequately treated, due to the existence of numerous unidentified variants, uncertainties in the pathogenicity scoring of many variants, and a substantial number of individuals lacking access to genetic testing. OBJECTIVE: The aim of this study was to identify a novel variant in the LDLR gene that causes FH in a Chinese family, thereby expanding the spectrum of FH-causing variants. METHODS: Patients were recruited from Beijing Anzhen Hospital, Capital Medical University. FH diagnosis was made according to the Dutch Lipid Clinical Network (DLCN) criteria. Whole-exome sequencing (WES) was conducted to identify the FH-causing variant in the proband, and amplicon sequencing was used to verify the variant in his family members. RESULTS: A three-generation Chinese family was recruited, and two FH patients were clinically diagnosed, both without known FH-causing variants. These two FH patients and another possible patient carried a novel variant, NC_000019.9(NM_000527.5):c.89_92dup (NP_000518.1:p.Phe32Argfs*21), in the ligand-binding domain of the low-density lipoprotein (LDL) receptor that led to a frameshift. The FH adults in the family showed severe clinical symptoms and statin therapy resistance. CONCLUSION: This study identified a novel pathogenic LDLR variant, c.89_92dup, associated with severe FH clinical manifestations and statin therapy resistance.


Assuntos
Mutação da Fase de Leitura , Hiperlipoproteinemia Tipo II , Linhagem , Receptores de LDL , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Receptores de LDL/genética , Masculino , Mutação da Fase de Leitura/genética , Feminino , Adulto , Pessoa de Meia-Idade , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA