Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1135784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283945

RESUMO

Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.

2.
Front Cell Dev Biol ; 10: 863140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557939

RESUMO

Organ formation initiates once cells become committed to one of the three embryonic germ layers. In the early stages of embryogenesis, different gene transcription networks regulate cell fate after each germ layer is established, thereby directing the formation of complex tissues and functional organs. These events can be modeled in vitro by creating organoids from induced pluripotent, embryonic, or adult stem cells to study organ formation. Under these conditions, the induced cells are guided down the developmental pathways as in embryonic development, resulting in an organ of a smaller size that possesses the essential functions of the organ of interest. Although organoids are widely studied, the formation of skeletal elements in an organoid model has not yet been possible. Therefore, we suggest that the formation of skeletal elements using the recombinant limb (RL) assay system can serve as an in vivo organoid model. RLs are formed from undissociated or dissociated-reaggregated undifferentiated mesodermal cells introduced into an ectodermal cover obtained from an early limb bud. Next, this filled ectoderm is grafted into the back of a donor chick embryo. Under these conditions, the cells can receive the nascent embryonic signals and develop complex skeletal elements. We propose that the formation of skeletal elements induced through the RL system may occur from stem cells or other types of progenitors, thus enabling the study of morphogenetic properties in vivo from these cells for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA