Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Plant Cell Physiol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092550

RESUMO

Perilla (Perilla frutescens (L.) var frutescens) is a traditional oil crop in Asia, recognized for its seeds abundant in α-linolenic acid (18:3), a key omega-3 fatty acid known for its health benefits. Despite the known nutritional value, the reason behind the higher 18:3 content in tetraploid perilla seeds remained unexplored. Gamma irradiation yielded mutants with altered seed fatty acid composition. Among the mutants, DY-46-5 showed a 27% increase in 18:2 due to the 4 bp deletion of PfrFAD3b and NC-65-12 displayed a 16% increase in 18:2 due to the loss of function of PfrFAD3a through a large deletion. Simultaneous knockout of two copies of FATTY ACID DESATURASE 3 (PfrFAD3a and PfrFAD3b) using CRISPR/Cas9 resulted in an increase in 18:2 by up to 75% and a decrease in 18:3 to as low as 0.3% in seeds, emphasizing the pivotal roles of both genes in 18:3 synthesis in tetraploid perilla. Furthermore, diploid Perilla citriodora, the progenitor of cultivated tetraploid perilla, harbors only PfrFAD3b, with fatty acid analysis revealing lower 18:3 levels than tetraploid perilla. In conclusion, the enhanced 18:3 content in cultivated tetraploid perilla seeds can be attributed to the acquisition of two FAD3 copies through hybridization with wild-type diploid perilla.

2.
Iran J Public Health ; 53(7): 1612-1620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086406

RESUMO

Background: Linoleic acid (LA) has modulatory effects on gastric cancer cell lines. This study aimed to investigate the effects of linoleic acid on the expression of metastatic and angiogenic molecular markers in gastric cancer cell line MKN-45. Methods: In this study performed in Tabriz, Iran in 2021, MKN-45 cells were treated with LA in the presence or absence of docetaxel. Total RNA was extracted, and cDNA synthesized from the cells before and after treatment. The expression levels of Talin-2 and MMP-2 genes and mir-20, mir-30, mir-126, and mir-194, were determined by quantitative real-time PCR. Results: LA treatment reduced the expression levels of mir-126, mir-194, mir-30, and MMP-2, while increased the expression levels of Talin-2 mRNA. Docetaxel treatment could decrease the expression levels of mir-20, Talin-2, and MMP-2 mRNA levels while increasing the expression levels of mir-126, mir-194, and mir-30. Additionally, the combined treatment of MKN-45 cells with LA and docetaxel could reduce the expression levels of mir-20 and mir-126 and increased the expression levels of mir-194, mir-30, Talin-2, and MMP-2 mRNAs. Conclusion: Modulation of the expression levels of gastric cancer involved microRNAs, Talin-2, and MMP-2 may be a mechanism through which LA may exert its biological effects on GC cell line MKN-45. LA may have an antimetastatic effect by reducing the MMP-2 expression and pro-angiogenic effect through increasing Talin-2 expression levels.

3.
Bioresour Technol ; 407: 131147, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043276

RESUMO

In this study, the effects of shear stress and different culture media on the growth of the filamentous microalga Klebsormidium cf. nitens were studied. The microalga's growth, carotenoids and fatty acids were further evaluated in a pump-driven tubular photobioreactor. The results show that this microalga had the ability to withstand high shear stress and the adaptability to grow in a culture medium that lacks certain trace elements. K. cf. nitens grew consistently in the tubular photobioreactor at different average light intensities although it did not grow well in a tall bubble column. The carotenoid analysis revealed that the xanthophyll cycle was activated to protect the cell photosynthetic system. The fatty acids increased with irradiance, with linoleic acid (C18:2n6) making up over 50 % of the total fatty acids. This study supports the potential of employing pump-driven tubular photobioreactors to produce the filamentous microalga K. cf nitens at the large scale.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38974772

RESUMO

Barth syndrome (BTHS) is a mitochondrial lipid disorder caused by mutations in TAFAZZIN (TAZ), required for cardiolipin (CL) remodeling. Cardiomyopathy is a major clinical feature, with no curative therapy. Linoleic acid (LA) supplementation is proposed to ameliorate BTHS cardiomyopathy by enhancing linoleoyl group incorporation into CL. While the beneficial effect of dietary LA supplementation in delaying the development of BTHS cardiomyopathy has been recently tested, its potential to reverse established BTHS cardiomyopathy remains unclear. Our study revealed that LA supplementation cannot rescue established BTHS cardiomyopathy in mice, highlighting the importance of early initiation of LA supplementation for maximum benefits.

5.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998529

RESUMO

Dry bean (Phaseolus vulgaris L.) is a crop of high nutritional interest widespread throughout the world. This research had two objectives. On the one hand, the development and validation of an analytical method to quantify fatty acids in dry beans based on the extraction and derivatization in a single step and later quantification by gas chromatography. On the other, its application to characterize the fatty acid content in a diversity panel consisting of 172 lines. The method was successfully validated in terms of accuracy, precision and robustness. Among the 14 fatty acids that constitute the fatty acid profile of dry bean, the most quantitatively important were linolenic acid, the major fatty acid in all cases, with an average value of 6.7 mg/g, followed by linoleic acid (3.9 mg/g), palmitic acid (2.9 mg/g) and oleic acid (1.5 mg/g). The concentrations of fatty acids in dry bean were influenced by the gene pool, with the Mesoamerican gene pool showing a higher content of palmitic, stearic, linoleic and linolenic acids and the Andean gene pool a higher level of cis-vaccenic acid. Also, the expression of fatty acid content showed high heritability. The information generated constitutes a robust database of interest in food technology, nutrition and breeding programs.

6.
Crit Rev Food Sci Nutr ; : 1-17, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041900

RESUMO

Conjugated linoleic acid (CLA), a bioactive fatty acid that provides various physiological benefits, has gained increasing attention in the food industry, and various studies have focused on enhancing its content in dairy products. The factors influencing CLA content in dairy products vary significantly, including lactation stage, breed type, seasonality, feed, management methods of the animals, the manufacturing processes, storage, and ripening periods of the product. Additionally, the incorporation of CLA-producing probiotic bacteria, such as Lactobacillus, Lactococcus, Bifidobacterium, and Propionibacterium, is an emerging study in this field. Studies have revealed that factors affecting the CLA content in milk affect that in dairy products as well. Furthermore, the species and strains of CLA-producing bacteria, fermentation conditions, ripening period, and type of dairy product are also contributing factors. However, production of CLA-enhanced dairy products using CLA-producing bacteria while maintaining their optimal viability and maximizing exposure to free linoleic acid remains limited. The current review emphasized the factors affecting the CLA content and related mechanisms, challenges in the application of CLA-producing probiotic bacteria, and strategies to address these challenges and enhance CLA production in dairy products. Therefore, the development of functional dairy products with enhanced CLA levels is expected to be possible.

7.
Heliyon ; 10(12): e33379, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022008

RESUMO

Background: Groundnut is one of the world's major food and oil crops. Being sources of nutrition and vegetable oil, rich in affordable and digestible protein, it is a strategic crop in Burkina Faso for food security, nutrition, and cash income. Understanding the nature of gene effect and genetic variation affecting yield and yield component traits will contribute to designing appropriate breeding methods for groundnut improvement and increase selection efficiency in Burkina Faso. Methods: In 2018, a total of 30 F2 progenies were generated through a 6 x 6 full diallel mating using six different and contrasting varieties. In 2019, parents and progenies were evaluated in a lattice square design in 3 replications at ICRISAT-Mali experimental field to assess the general combining ability (GCA) and specific combining ability (SCA) effects, the inheritance and the maternal and reciprocal effects for yield component traits (YCT) and oil content (OC). Results: Significant variabilities were observed among the parental genotypes and their F2 progenies for DTH, PSR, HPW, PL, PWD, SL, SWD, and OAC. Mean performance of the six parents were HPW (117.05g), HSW (57.24 g), PYH (1914.76), SYH (1312.73), PL (2.52), PWD (1,19), SL (1.38), SWD (0.83), OC (49.43), OAC (50.43) and LAC (33.61). Parent QH243C presented the highest value for SWD (1.02 cm) and OAC (60.76) while the parent ICGV09195 had the highest value of OC (50.36). Chalimbana presented the highest value of HPW (169.61 g), PL (2.98 cm), PWD (1. 41 cm), and SL (1.57 cm) while CG7 presented the highest value for HSW (75. 14 g), and SYH (1639.28 kg). Both YCT and OC are controlled by additive and non-additive gene effects with a predominance of additive gene action for HSW, SL, and SWD, whereas HPW, PL, PWD, and OAC were found to be more controlled by non-additive gene effects. Maternal effects as well as nuclear and cytoplasmic interaction effects were observed for both YCT and OC indicating that YCT and OC are influenced by a combination of genetic factors from both the maternal parent and the nuclear genome, as well as cytoplasmic factors such as mitochondrial DNA. Broad sense heritability ranged from 3.76 % to 91.56 %, and higher broad sense heritability values were recorded for pod length (91.56 %), hundred pod weight (83.71 %) and pod width (80.95 %). Conclusion: The study yields valuable insights into the inheritance of YCT and OC. The parents, Chalimbana and CG7, showed promise as good combiners for both yield component traits and oil content when used as male parents while TE3, Sh470P and QH243C can be used as female for the oil content and its components (oleic and linoleic content).

8.
BMC Med ; 22(1): 300, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020393

RESUMO

BACKGROUND: Multiple high doses of 131I therapy in patients with differentiated thyroid cancer (DTC) might disrupt the balance of gut microbiota and metabolites. This study aimed to investigate the alterations of intestinal bacteria and metabolism over two courses of 131I therapy, explore the interactions, and construct diagnostic models reflecting enteric microecology based on 131I therapy. METHODS: A total of 81 patients were recruited for the first 131I therapy (131I-1st), among whom 16 received a second course (131I-2nd) after half a year. Fecal samples were collected 1 day before (Pre-131I-1st/2nd) and 3 days after (Post-131I-1st/2nd) 131I therapy for microbiome (16S rRNA gene sequencing) and metabolomic (LC-MS/MS) analyses. RESULTS: A total of six microbial genera and 11 fecal metabolites enriched in three pathways were identified to show significant differences between Pre-131I-1st and other groups throughout the two courses of 131I treatment. In the Post-131I-1st group, the beneficial bacteria Bifidobacterium, Lachnoclostridium, uncultured_bacterium_f_Lachnospiraceae, and Lachnospiraceae_UCG004 were abundant and the radiation-sensitive pathways of linoleic acid (LA), arachidonic acid, and tryptophan metabolism were inhibited compared with the Pre-131I-1st group. Compared with the Pre-131I-1st group, the Pre-131I-2nd group exhibited a reduced diversity of flora and differentially expressed metabolites, with a low abundance of beneficial bacteria and dysregulated radiation-sensitive pathways. However, less significant differences in microbiota and metabolites were found between the Pre/Post-131I-2nd groups compared with those between the Pre/Post-131I-1st groups. A complex co-occurrence was observed between 6 genera and 11 metabolites, with Lachnoclostridium, Lachnospiraceae_UCG004, Escherichia-Shigella, and LA-related metabolites contributing the most. Furthermore, combined diagnostic models of charactered bacteria and metabolites answered well in the early, long-term, and dose-dependent responses for 131I therapy. CONCLUSIONS: Different stages of 131I therapy exert various effects on gut microecology, which play an essential role in regulating radiotoxicity and predicting the therapeutic response.


Assuntos
Fezes , Microbioma Gastrointestinal , Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Humanos , Microbioma Gastrointestinal/fisiologia , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Fezes/microbiologia , Idoso , RNA Ribossômico 16S/genética , Adulto Jovem
9.
Nutr Neurosci ; : 1-18, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963806

RESUMO

OBJECTIVES: Depression is a widely prevalent mental disorder, and nutritional interventions play an increasingly important role in its treatment. In this paper, effects of linoleic acid (LA) on depressive behavior in mice induced by gut microbiome disorders were investigated. METHODS: Fifty C57BL/6J male mice were randomly separated into five groups, control group (CK), ceftriaxone sodium group (CRO), low-dose linoleic acid group (LLA, 1 g/kg), medium-dose linoleic acid group (MLA, 2 g/kg), and high-dose linoleic acid group (HLA, 5 g/kg). In the LLA, MLA, and HLA groups, mice were treated with ceftriaxone sodium (CRO) to induce depressive behaviors, followed by LA administration. Behavioral tests were used to evaluate depressive behavior. High-throughput sequencing and Hematoxylin-eosin (H&E) staining in gut microenvironment were carried out. ELISA kits were used to measure brain inflammatory factors, and 5-hydroxy-tryptamine (5-HT). Gas chromatography and western blot were used to determine fatty acids compositions and the enzymes expression involved in lipid metabolism in brain respectively. RESULTS: The results showed that 10 weeks CRO treatment contribute to depressive behavior, gut microbiome disturbance, and serotonin system disturbance. LLA and MLA improved the depressive-like behavior, and significantly increased the levels of 5-HT1A, 5-HTT and 5-HT in the hippocampus. LLA was found to improve the diversity of gut microbiome and alleviate colon tissue damage. Meantime, LLA increased the content of linoleic acid, improved the expression of FADS2 and COX-2, increased IL-10 levels, and decreased IL-6 levels in the brain. DISCUSSION: LA alleviated depressive behavior in mice by improving the gut microenvironment, regulate fatty acid metabolism, and modulate inflammation.

10.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063152

RESUMO

Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.


Assuntos
Encéfalo , Endocanabinoides , Ácidos Graxos , Ácido Linoleico , Plasmalogênios , Feminino , Animais , Masculino , Gravidez , Ratos , Encéfalo/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Endocanabinoides/sangue , Endocanabinoides/metabolismo , Ácido Linoleico/sangue , Plasmalogênios/sangue , Plasmalogênios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/sangue , Caracteres Sexuais , Fatores Sexuais
11.
Photochem Photobiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970228

RESUMO

Excessive exposure to ultraviolet radiation (UVR) causes harmful effects on human skin. Pre-exposure application of sunscreen can be protective, but not after damage already has occurred. There is a need for agents that can be applied post-UVR exposure to repair the damage. We investigated a novel compound, NEO400, that appears to meet this medicinal need. NEO400 was created by conjugating linoleic acid to perillyl alcohol. UVR was repeatedly administered to the skin of mice over several weeks, where it caused the typical signs of UV damage, including scaling of the skin, DNA damage, and elevated levels of inflammatory cytokines. However, when NEO400 was applied immediately post-UVR, it triggered the appearance of markers for dermal stem cell proliferation, and no signs of skin damage emerged. Furthermore, when NEO400 was applied to skin that already had incurred significant damage, it accelerated skin healing. When applied individually, linoleic acid and perillyl alcohol were ineffective, indicating that they had to be conjugated in order to exert therapeutic efficacy. None of these skin-protective effects could be achieved with Aloe vera gel, a popular and widely used post-exposure remedy. Our study suggests that NEO400 holds potential as a regenerative treatment for excessively UVR-exposed skin.

12.
Methods Mol Biol ; 2816: 241-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977603

RESUMO

Bioactive lipids have been identified as dynamic signaling lipid mediators (LMs). These fats have the ability to activate responses and control bodily functions either directly or indirectly. Linoleic Acid (LA) and Alpha Linoleic Acid (ALA) are types of omega 3 fatty acids that possess inflammatory properties and promote resolution of inflammation either through their own actions or through their metabolites known as oxylipins. In this chapter, we provide an explanation of a method that combines chromatography with tandem mass spectroscopy (LC MS/MS) to identify and measure all the metabolites derived from LA and ALA. Additionally, we employed the described methodology to analyze human serum samples obtained before and after whole-body vibration exercise training. The results indicated an increase in some of the LA and ALA LMs that have beneficial effects in regulating the cardiovascular system.


Assuntos
Ácido Linoleico , Lipidômica , Espectrometria de Massas em Tandem , Vibração , Humanos , Ácido Linoleico/metabolismo , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Exercício Físico/fisiologia , Oxilipinas/metabolismo , Oxilipinas/sangue , Metabolismo dos Lipídeos
13.
Chemistry ; : e202401163, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953593

RESUMO

This paper presents the synthesis and characterization of a series of novel monomeric aqua-ligated iron(III) complexes, [FeIII(L5R)(OH2)]2+ (R = OMe, H, Cl, NO2), supported by an amide-containing pentadentate N5 donor ligand, L5R [HL5R = 2-(((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-yl-methyl)amino)-N-(5-R-quinolin-8-yl)acetamide]. The complexes were characterized by various spectroscopic and analytical techniques, including electrochemistry and magnetic measurements. The Fe(III)-hydroxo complexes, [FeIII(L5R)(OH)]1+, were generated in situ by deprotonating the corresponding aqua complexes in a pH ~7 aqueous medium. In another way, adding one equivalent of a base to a methanolic solution of the Fe(III)-aqua complexes also produced the Fe(III)-hydroxo complexes. The study uses linoleic fatty acid as a substrate to explore the hydrogen atom abstraction (HAA) reactivity of both hydroxo- and aqua-complexes. The investigation highlights the substitution effect of the L5R ligand on reactivity, revealing a higher rate when an electron-withdrawing group is present. Hammett analyses and(or) determination of the asynchronicity factor (η) suggest an oxidative asynchronous concerted proton-electron transfer (CPET) pathway for the HAA reactions. Aqua complexes exhibited a higher asynchronicity in CPET, resulting in higher reaction rates than their hydroxo analogues. Overall, the work provides insights into the beneficial role of a higher imbalance in electron-transfer-proton-transfer (ET-PT) contributions in HAA reactivity.

14.
Animal ; 18(8): 101240, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39079311

RESUMO

The black soldier fly (Hermetia illucens) is attracting increasing interest for its ability to convert low-value substrates into highly nutritious feed. This study aimed at evaluating grape pomace from two varieties (Becuet - B; Moscato - M) as rearing substrates for black soldier fly larvae (BSFL), focusing on the related effects on larval growth performance, proximate composition, and fatty acid profile. A total of six replicates per treatment, and 1 000 BSFL per replica, were used. Larval development was assessed by larvae weight, which was recorded eight times during the trial: the day after the beginning of the trial, and then on days 5, 8, 13, 15, 20, 22, and 27 (day in which the 30% of BSFL reached the prepupal stage). Production and waste reduction efficiency parameters, namely the growth rate, substrate reduction and substrate reduction index, were calculated. The two grape pomace varieties were analysed for their proximate composition and fatty acid profile; the same analyses were conducted on BSFL (30 larvae per replica) that were collected at the end of the trial (day 27). The growth rate of BSFL showed a higher value when the larvae were reared on B substrate (4.4 and 3.2 mg/day for B and M, respectively; P < 0.01). The rearing substrate did not significantly affect the proximate composition of BSFL. The percentage of total lipids (TL) in M-fed BSFL was significantly higher than in B ones. Total saturated (P < 0.001) and monounsaturated fatty acids (P < 0.05) were significantly higher in M-fed BSFL, while an opposite trend was observed for total branched-chain (P < 0.001) and total polyunsaturated fatty acids (P < 0.001). Interestingly, some conjugated linoleic acid (CLA) isomers [i.e., C18:2 c9t11(+t7c9+t8c10) and t9t11] were detected in low amounts in both rearing substrates (total CLA equal to 0.085 and 0.16 g/100 g TL in B and M substrate, respectively). Some CLA isomers (i.e., C18:2 c9t11, t7c9, and t10c12) were also found in BSFL, reaching a total CLA concentration equal to 2.95 and 0.052 g/100 g of TL in B-fed and M-fed BSFL, respectively. This study demonstrates that winery by-products from different grape varieties can significantly affect the development and lipid composition of BSFL. The CLA biosynthesis potential of BSFL opens newsworthy perspectives for a new valorisation of winery by-products to produce full-fat black soldier fly meal and black soldier fly oil enriched in specific fatty acids of potential health-promoting interest.

15.
Lifestyle Genom ; 17(1): 82-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952113

RESUMO

INTRODUCTION: This study aims to investigate if a mixture of functional lipids (FLs), containing conjugated linoleic acid (CLA), tocopherols (TPs), and phytosterols (PSs), prevents some lipid alterations induced by high-fat (HF) diets, without adverse effects. METHODS: Male CF1 mice (n = 6/group) were fed (4 weeks) with control (C), HF, or HF + FL diets. RESULTS: FL prevented the overweight induced by the HF diet and reduced the adipose tissue (AT) weight, associated with lower energy efficiency. After the intervention period, the serum triacylglycerol (TAG) levels in both HF diets underwent a decrease associated with an enhanced LPL activity (mainly in muscle). The beneficial effect of the FL mixture on body weight gain and AT weight might be attributed to the decreased lipogenesis, denoted by the lower mRNA levels of SREBP1-c and ACC in AT, as well as by an exacerbated lipid catabolism, reflected by increased mRNA levels of PPARα, ATGL, HSL, and UCP2 in AT. Liver TAG levels were reduced in the HF + FL group due to an elevated lipid oxidation associated with a higher CPT-1 activity and mRNA levels of PPARα and CPT-1a. Moreover, genes linked to fatty acid biosynthesis (SREBP1-c and ACC) showed decreased mRNA levels in both HF diets, this finding being more pronounced in the HF + FL group. CONCLUSION: The administration of an FL mixture (CLA + TP + PS) prevented some lipid alterations induced by a HF diet, avoiding frequent deleterious effects of CLA in mice through the modulation of gene expression related to the regulation of lipid metabolism.


Assuntos
Dieta Hiperlipídica , Ácidos Linoleicos Conjugados , Metabolismo dos Lipídeos , Fígado , PPAR alfa , Proteína de Ligação a Elemento Regulador de Esterol 1 , Triglicerídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Triglicerídeos/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ácidos Linoleicos Conjugados/farmacologia , Lipogênese/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética , Fitosteróis/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética
16.
J Lipid Res ; : 100608, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069231

RESUMO

Eicosanoids are a class of molecules derived from C20 polyunsaturated fatty acids (PUFAs) that play a vital role in mammalian and insect biological systems including development, reproduction, and immunity. Recent research has shown that insects have significant but lower levels of C20 PUFAs in circulation in comparison to C18 PUFAs. It has been previously hypothesized in insects that eicosanoids are synthesized from C18 precursors such as linoleic acid (LA), to produce downstream eicosanoids. In this study we show that introduction of arachidonic acid (AA) stimulates production of COX, LOX, and CYP450-derived eicosanoids. Downstream immune readouts showed that LA stimulates phagocytosis by hemocytes, while both LA and AA stimulate increased antimicrobial peptide production when D. melanogaster is exposed to a heat-killed bacterial pathogen. In totality this work identifies PUFAs that are involved in insect immunity and adds evidence to the notion that Drosophila utilizes immunostimulatory lipid signaling to mitigate bacterial infections. Our understanding of immune signaling in the fly and its analogies to mammalian systems will increase the power and value of Drosophila as a model organism in immune studies.

17.
J Alzheimers Dis ; 100(3): 1083-1097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995791

RESUMO

Background: Although observational studies indicated connections between fatty acids (FAs) and Alzheimer's disease and dementia, uncertainty persists regarding how these relationships extend to dementia with Lewy bodies (DLB). Objective: To explore the potential causal relationships between FAs and the development of DLB, thus clarifying these associations using genetic instruments to infer causality. Methods: We applied a two-sample Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) approach. Genetic data were obtained from a DLB cohort, comprising 2,591 cases and 4,027 controls of European descent. Eight FAs, including linoleic acid, docosahexaenoic acid, monounsaturated fatty acid, omega-3 fatty acid, omega-6 fatty acid, polyunsaturated fatty acid, saturated fatty acid, and total fatty acid, were procured from a comprehensive GWAS of metabolic biomarkers of UK Biobank, conducted by Nightingale Health in 2020 (met-d), involving 114,999 individuals. Our analysis included inverse-variance weighted, MR-Egger, weighted-median, simple mode, and weighted-mode MR estimates. Cochran's Q-statistics, MR-PRESSO, and MR-Egger intercept test were used to quantify the heterogeneity and horizontal pleiotropy of instrumental variables. Results: Only linoleic acid showed a significant genetic association with the risk of developing DLB in the univariate MR. The odds ratio for linoleic acid was 1.337 with a 95% confidence interval of 1.019-1.756 (pIVW = 0.036). Results from the MVMR showed that no FAs were associated with the incidence of DLB. Conclusions: The results did not support the hypothesis that FAs could reduce the risk of developing DLB. However, elucidating the relationship between FAs and DLB risk holds potential implications for informing dietary recommendations and therapeutic approaches in DLB.


Assuntos
Ácidos Graxos , Doença por Corpos de Lewy , Análise da Randomização Mendeliana , Humanos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/epidemiologia , Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla , Feminino , Masculino , Idoso , Polimorfismo de Nucleotídeo Único/genética , Estudos de Coortes
18.
Food Chem X ; 22: 101487, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855096

RESUMO

In order to investigate the dynamic changes of flavor compounds, Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) combined with Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) was used to detect the metabolites in different drying processes. A total of 80 volatile compounds and 1319 non-volatile compounds were identified. The trend in the changes of C-8 compounds and sulfur-containing compounds were generally consistent with the trend of key enzyme activities. 479 differential metabolites were identified and revealed that metabolic profiles of compounds in Boletus edulis were altered with increased organic acids and derivatives and lipids and lipid-like molecules. Fatty acids and amino acids were transformed into volatile compounds under the action of enzymes, which played a significant role in the formation of the distinctive flavor of Boletus edulis. Our study provided a theoretical support for fully comprehending the formation mechanism of flavor from Boletus edulis during drying processes.

19.
J Oleo Sci ; 73(6): 847-855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825538

RESUMO

Unsaturated fatty acids, such as oleic and linoleic acids, are easily oxidized by exposure to temperature and light in the presence of air to form unsaturated fatty acid hydroperoxides as primary oxidation products. However, the catabolic rates of unsaturated fatty acid hydroperoxides in the human body remain unknown. In this study, ethyl esters of 13C-labeled linoleic acid (*C18:2-EE) and oleic acid (*C18:1-EE) and their hydroperoxides (*C18:2-EE-OOH and *C18:1-EE-OOH, respectively) prepared by the photo-oxidation of *C18:2-EE and *C18:1-EE, respectively, were administered to mice and their catabolic rates were determined by measuring the expired 13CO2 levels. *C18:2-EE-OOH and *C18:1-EE-OOH were ß-oxidized faster than *C18:2-EE and *C18:1-EE, respectively. Notably, rapid ß-oxidation of *C18:2-EE-OOH and *C18:1-EE-OOH was similar to that of medium-chain fatty acids, such as octanoic acid. Then, degradation products of C18:2-EE-OOH and C18:1-EE-OOH were analyzed under gastric conditions by gas chromatography/mass spectrometry. Major decomposition products of C18:2-EE-OOH and C18:1-EE-OOH were medium-chain compounds, such as octanoic acid ethyl ester, 9-oxo-nonanoic acid ethyl ester, and 10-oxo-8-decenoic acid ethyl esters, indicating that C18:2-EE-OOH and C18:1-EE-OOH isomers formed during photo-oxidation were decomposed under acidic conditions. These findings support previous reports that dietary lipid hydroperoxides are not absorbed into the intestine as lipid hydroperoxides but as degradation products. This is the first study to suggest that dietary lipid hydroperoxides decompose during gastric digestion to form medium-chain compounds that are directly absorbed into the liver via the portal vein and rapidly catabolized via ß-oxidation.


Assuntos
Dióxido de Carbono , Isótopos de Carbono , Ácido Linoleico , Ácido Oleico , Oxirredução , Animais , Ácido Oleico/metabolismo , Ácido Oleico/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Camundongos , Masculino , Peróxido de Hidrogênio/metabolismo
20.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892622

RESUMO

Breast milk (BM) plays a crucial role in providing essential fatty acids (FA) and energy for the growing infant. When the mother's own BM is not available, nutritional recommendations suggest donor milk (DM) in clinical and home practices. BM was collected from a variety of donor mothers in different lactation stages. Holder pasteurization (HoP) eliminates potential contaminants to ensure safety. FA content of BM samples from the Breast Milk Collection Center of Pécs, Hungary, were analyzed before and after HoP. HoP decreases the level of C6:0, C8:0, C14:1n-5c, C18:1n-9c, C18:3n-6c, C18:3n-3c, and C20:4n-6c in BM, while C14:0, C16:0, C18:1n-9t, C22:0, C22:1n-9c, C24:0, C24:1n-9c, and C22:6n-3c were found in elevated concentration after HoP. We did not detect time-dependent concentration changes in FAs in the first year of lactation. BM produced for girl infants contains higher C20:2n-6c levels. In the BM of mothers who delivered via cesarean section, C12:0, C15:0, C16:0, C17:0, C18:0, C18:1n-9t, C22:1n-9c levels were higher, while C18:2n-6c, C22:0, C24:0, and C22:6n-3c concentrations were lower compared to mothers who gave birth spontaneously. FAs in BM are constant during the first year of lactation. Although HoP modifies the concentration of different FAs, pasteurized DM provides essential FAs to the developing infant. Current data providing information about the FA profile of BM gives origination to supplementation guidelines.


Assuntos
Ácidos Graxos , Leite Humano , Pasteurização , Humanos , Leite Humano/química , Feminino , Pasteurização/métodos , Ácidos Graxos/análise , Lactente , Adulto , Recém-Nascido , Fatores Sexuais , Gravidez , Lactação , Parto Obstétrico/métodos , Hungria , Bancos de Leite Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA