RESUMO
Excessive caloric intake and obesity due to high-fat (HFD) and high-disaccharide (HDD) diets have been recognized as major contributing factors to dyslipidemia and metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effect of HFD and HDD without excessive caloric intake is obscure. The aim of the study was to evaluate the effect of physiological caloric intake delivered through HFD and HDD on liver and lipid profiles. The study was performed on 6-week-old male and female (50/50%) Sprague Dawley rats, receiving either a standard (controls, n = 16), HFD (n = 14) or HDD (n = 14) chow. All groups received the same, standard daily calorie rations, titrated weekly to the age of growing rats, for 12 weeks. A panel of metabolic in vivo measurement were performed, followed by histological, biochemical and molecular biology assays on tissues harvested from sacrificed rats. There was no significant difference between the groups in body weight. In contrast to controls, HFD and HDD groups showed metabolic dysfunction-associated steatohepatitis (MASH) characterized by liver steatosis, inflammation, ballooning of hepatocytes and fibrosis. These changes were more pronounced in the HFD than in the HDD group. The HFD group showed significantly higher serum LDL than controls or HDD rats. Furthermore, the HFD group had higher liver protein levels of low-density lipoprotein receptor (LDLR) but lower plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) than the controls or HDD group. There were no differences between sexes in evaluated parameters. The excessive caloric intake and obesity are not prerequisites for the development of MASH and dyslipidemia in rats. The liver changes induced by the HFD and HDD diets exhibit differences in severity, as well as in the expression patterns of LDLR and PCSK9. Notably, these effects are independent of the sex of the rats.
Assuntos
Dieta Hiperlipídica , Dislipidemias , Ingestão de Energia , Obesidade , Ratos Sprague-Dawley , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Dislipidemias/etiologia , Dislipidemias/metabolismo , Feminino , Ratos , Obesidade/metabolismo , Obesidade/etiologia , Fígado/metabolismo , Fígado/patologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Pró-Proteína Convertase 9/metabolismoRESUMO
Valproate (VPA) has been the first-line, most frequently prescribed antiepileptic drug in children over the past 50 years. VPA causes, idiosyncratic hepatotoxicity in some patients, who often presents with hepatic steatosis. Experimental studies also support that VPA has high potential to induce steatosis. However, there is an apparent lack of significant hepatic problems in neuropediatric units, likely because iatrogenic liver steatosis lacks specific biomarkers. Thus, it is possible that a relevant number of children under VPA have asymptomatic fatty liver. AIMS: 1) to demonstrate VPA-induced triglyceride (TG) accumulation in cultured human upcyte hepatocytes, 2) to identify miRNAs that are deregulated by VPA and associated with TG levels in these cells, and 3) to test these miRNAs, as potential non-invasive biomarkers, in plasma of paediatric epileptic patients on VPA, to identify those with a potential risk of liver steatosis. Human upcyte hepatocytes were exposed to subcytotoxic VPA concentrations. Hepatocytes increased intracellular TGs by 27â¯% and 45â¯% after 2 and 4â¯mM VPA for 24â¯h. The profiling of cellular miRNAs by microarray analysis after 4â¯mM VPA identified 43 deregulated human miRNAs (fold-change > 1.5 or < -1.5; FDR p<0.05). Some of them (n=11), which were validated by RTqPCR and showed correlation (Pearson r≥ 0.6) with intracellular TG levels, were selected as potential VPA-induced steatosis biomarkers. Next, we investigated the expression of these miRNAs in human plasma and found that 9 of them could be reliably quantified by RTqPCR: miR-485-3p, miR-127-3p, miR-30a-3p, miR-92b-3p, miR-212-3p, miR-182-5p, miR-183-5p, miR-500a-5p and miR-675-5p. Screening of this 9-miRNA signature in 80 paediatric epileptic patients on VPA identified 18 patients (23â¯%) that clustered separately because of important alterations in the selected plasma miRNAs. These patients were younger and had higher VPA blood concentrations and serum liver enzyme levels. In conclusion, VPA induced both TG accumulation and deregulation of a set of miRNAs in cultured human hepatocytes. Nine of these miRNAs have demonstrated potential as circulating biomarkers to identify VPA-induced steatosis in epileptic patients, which should require closer clinical follow-up.
RESUMO
BACKGROUND: Due to the ongoing organ shortage, marginal grafts with steatosis are more frequently used in liver transplantation, leading to higher occurrences of graft dysfunction. A histological analysis is the gold standard for the quantification of liver steatosis (LS), but has its drawbacks: it is an invasive method that varies from one pathologist to another and is not available in every hospital at the time of organ procurement. This study aimed to compare non-invasive diagnostic tools to a histological analysis for the quantification of liver steatosis. METHODS: Male C57BL6J mice were fed with a methioninecholine-deficient (MCD) diet for 14 days or 28 days to induce LS, and were compared to a control group of animals fed with a normal diet. The following non-invasive techniques were performed and compared to the histological quantification of liver steatosis: magnetic resonance spectroscopy (MRS), CARS microscopy, 99mTc MIBI SPECT imaging, and a new near-infrared spectrometer (NIR-SG1). RESULTS: After 28 days on the MCD diet, an evaluation of LS showed ≥30% macrovesicular steatosis. High correlations were found between the NIR-SG1 and the blinded pathologist analysis (R2 = 0.945) (p = 0.001), and between the CARS microscopy (R2 = 0.801 (p < 0.001); MRS, R2 = 0.898 (p < 0.001)) and the blinded pathologist analysis. The ROC curve analysis showed that the area under the curve (AUC) was 1 for both the NIR-SG1 and MRS (p = 0.021 and p < 0.001, respectively), while the AUC = 0.910 for the Oil Red O stain (p < 0.001) and the AUC = 0.865 for the CARS microscopy (p < 0.001). The AUC for the 99mTc MIBI SPECT was 0.640 (p = 0.013), and this was a less discriminating technique for LS quantification. CONCLUSIONS: The best-performing non-invasive methods for LS quantification are MRS, CARS microscopy, and the NIR-SG1. The NIR-SG1 is particularly appropriate for clinical practice and needs to be validated by clinical studies on liver grafts.
RESUMO
The mechanisms underlying obesity-induced insulin resistance remain incompletely understood, as impaired cellular insulin signaling, traditionally considered the primary driver of insulin resistance, does not always accompany impaired insulin action. Overnutrition rapidly increases plasma norepinephrine (NE), suggesting overactivation of the sympathetic nervous system (SNS). However, the role of the SNS in obesity is controversial, as both increased and decreased SNS activity (SNA) have been reported. Here, we show that reducing catecholamine (CA) release from the SNS protects against overnutrition-induced insulin resistance as well as hyperglucagonemia, adipose tissue dysfunction, and fatty liver disease, as we demonstrate utilizing a mouse model of inducible and peripherally restricted deletion of tyrosine hydroxylase (th; THΔper). A key mechanism through which heightened SNA induces insulin resistance is by triggering adipose tissue lipolysis. Increased SNA emerges as a critical driver in the pathogenesis of overnutrition-induced insulin resistance and metabolic disease independent of cellular insulin signaling.
RESUMO
BACKGROUND/OBJECTIVES: Algorithms for quantifying liver fat content based on the ultrasound attenuation coefficient (AC) are currently available; however, little is known about whether their accuracy increases by applying quality criteria such as the interquartile range-to-median ratio (IQR/M) or whether the median or average AC value should be used. METHODS: AC measurements were performed with the Aplio i800 ultrasound system using the attenuation imaging (ATI) algorithm (Canon Medical Systems, Otawara, Tochigi, Japan). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) was the reference standard. The diagnostic performance of the AC median value of 5 measurements (AC-M) was compared to that of AC average value (AC-A) of 5 or 3 acquisitions and different levels of IQR/M for median values or standard deviation/average (SD/A) for average values were also analyzed. Concordance between AC-5M, AC-5A, and AC3A was evaluated with concordance correlation coefficient (CCC). RESULTS: A total of 182 individuals (94 females; mean age, 51.2y [SD: 15]) were evaluated. A total of 77 (42.3%) individuals had S0 steatosis (MRI-PDFF < 6%), 75 (41.2%) S1 (MRI-PDFF 6-17%), 10 (5.5%) S2 (MRI-PDFF 17.1-22%), and 20 (11%) S3 (MRI-PDFF ≥ 22.1%). Concordance of AC-5A and AC-3A with AC-5M was excellent (CCC: 0.99 and 0.96, respectively). The correlation with MRI-PDFF was almost perfect. Diagnostic accuracy of AC-5M, AC-5A, and AC3A was not significantly affected by different levels of IQR/M or SD/A. CONCLUSIONS: The accuracy of AC in quantifying liver fat content was not affected by reducing the number of acquisitions (from five to three), by using the mean instead of the median, or by reducing the IQR/M or SD/A to ≤5%.
RESUMO
Background/Objectives: Resting metabolic rate (RMR) is an important contributor of energy balance and displays a well-documented relationship with sex, age, race and fat-free mass (FFM) in the existing scientific literature. However, the impact of other body composition components such as fat and liver fat on RMR remains unclear. This study aims to investigate the correlation of RMR with body composition parameters in a sample of patients with overweight and obesity. Methods: Retrospective data of patients with overweight or obesity referred for magnetic resonance imaging of liver fat during the period 2018-2023 were utilized for this study. Demographic and anthropometric data were collected, including body composition parameters (body fat, muscle mass) and RMR measured by bioelectrical impedance and indirect calorimetry, respectively. Results: The final sample included 53 patients (66% male), with a mean age of 48 years (±11.2) and a mean body mass index (ΒΜΙ) of 38.5 kg/m2 (32.7, 44.7). Simple correlation models revealed that RMR was separately correlated with gender, age, BMI, muscle mass, and liver fat (all p < 0.05) but not with fat mass. When multiple regression models were employed, only muscle mass retained its statistically significant influence on RMR, while total and hepatic fat did not significantly affect RMR after controlling for other parameters (gender, age, muscle mass). Conclusions: These findings confirm the known correlation between muscle mass and RMR while highlighting the lack of association between total and hepatic fat and RMR in individuals with overweight and obesity.
RESUMO
BACKGROUND/OBJECTIVES: Antrodia camphorata, also known as "Niuchangchih" in Taiwan, is a unique medicinal mushroom native to Taiwan. It is used in traditional medicine to treat various health conditions. In this study, we investigated the efficacy of A. camphorata mycelia on alcohol-induced liver damage, both in vitro and in vivo, in a Good Laboratory Practice (GLP) facility. METHODS: The experimental groups consisted of a normal control group (G1), a negative control group (G2), an A. camphorata mycelium powder 50 mg/kg/day administration group (G3), a 100 mg/kg/day administration group (G4), a 200 mg/kg/day administration group (G5), and a positive control silymarin 200 mg/kg/day administration group (G6), with 10 Sprague Dawley rats assigned to each treatment group. RESULTS: We found that treatment with A. camphorata mycelium powder significantly reduced alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, cholesterol, adiponectin, triglyceride, and malondialdehyde concentrations. Histopathological analysis also revealed that the inflammation score significantly decreased in the A. camphorata-treated groups. CONCLUSION: Based on these results, we conclude that repeated oral administration of A. camphorata mycelium powder is effective in improving alcoholic liver disease.
Assuntos
Fígado , Micélio , Pós , Ratos Sprague-Dawley , Micélio/química , Animais , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Masculino , Ratos , Alanina Transaminase/sangue , Etanol , Aspartato Aminotransferases/sangue , Antrodia/química , Substâncias Protetoras/farmacologia , Malondialdeído/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/tratamento farmacológico , Triglicerídeos/sangue , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Adiponectina/metabolismo , Adiponectina/sangue , Colesterol/sangue , PolyporalesRESUMO
Phloroglucinol (PHG), an analgesic and spasmolytic drug, shows promise in preventing high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. In Wistar rats, 10 weeks of PHG treatment did not prevent HFD-induced weight gain but significantly mitigated fasting hyperglycemia, impaired insulin responses, and liver steatosis. This protective effect was not linked to hepatic lipogenesis or AMP-activated protein kinase (AMPK) activation. Instead, PHG improved mitochondrial function by reducing oxidative stress, enhancing ATP production, and increasing anti-oxidant enzyme activity. PHG also relaxed gastric smooth muscles via potassium channel activation and nitric oxide (NO) signaling, potentially delaying gastric emptying. A pilot intervention in pre-diabetic men confirmed PHG's efficacy in improving postprandial glycemic control and altering lipid metabolism. These findings suggest PHG as a potential therapeutic for NAFLD and insulin resistance, acting through mechanisms involving mitochondrial protection, anti-oxidant activity, and gastric motility modulation. Further clinical evaluation is warranted to explore PHG's full therapeutic potential.
Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Floroglucinol , Ratos Wistar , Animais , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Humanos , Ratos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/farmacologiaRESUMO
OBJECTIVES: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disorder in Western countries, with approximately 20%-30% of the MASLD patients progressing to severe stages. There is an urgent need for noninvasive, cost-effective, widely accessible, and precise biomarkers to evaluate liver steatosis. This study aims to assess and compare the diagnostic performance of a novel reference frequency method-based ultrasound attenuation coefficient estimation (ACE) in both fundamental (RFM-ACE-FI) and harmonic (RFM-ACE-HI) imaging for detecting and grading liver steatosis. METHODS: An Institutional Review Board-approved prospective study was carried out between December 2018 and October 2022. A total number of 130 subjects were enrolled in the study. The correlation between RFM-ACE-HI values and magnetic resonance imaging proton density fat fraction (MRI-PDFF), as well as between RFM-ACE-FI values and MRI-PDFF were calculated. The diagnostic performance of RFM-ACE-FI and RFM-ACE-HI was evaluated using receiver operating characteristic (ROC) curve analysis, as compared to MRI-PDFF. The reproducibility of RFM-ACE-HI was assessed by interobserver agreement between two sonographers. RESULTS: A strong correlation was observed between RFM-ACE-HI and MRI-PDFF, with R = 0.88 (95% confidence interval [CI]: 0.83-0.92; P < .001), while the correlation between RFM-ACE-FI and MRI-PDFF was R = 0.65 (95% CI: 0.50-0.76; P < .001). The area under the ROC (AUROC) curve for RFM-ACE-HI in staging liver steatosis grades of S ≥ 1 and S ≥ 2 was 0.97 (95% CI: 0.91-0.99; P < .001) and 0.98 (95% CI: 0.93-1.00; P < .001), respectively, and 0.76 (95% CI: 0.65-0.85) and 0.80 (95% CI: 0.70-0.88) for RFM-ACE-FI, respectively. Great reproducibility was achieved for RFM-ACE-HI, with an interobserver agreement of R = 0.97 (95% CI: 0.94-0.99; P < .001). CONCLUSIONS: The novel RFM-ACE-HI method offered high liver steatosis diagnostic accuracy and reproducibility, which has important clinical implications for early disease intervention and treatment evaluation.
RESUMO
INTRODUCTION: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a healthcare issue of growing concern. Its development is multifactorial, and it is more commonly seen in obese patients. In those circumstances, intracellular lipid overload ensues, resulting in oxidative stress that might be responsible for progression toward steatohepatitis. Novel therapeutic approaches that are effective in weight management are expected to improve the course of MASLD. One of the potential mechanisms involved in such protective properties may relate to the reduction in oxidative stress. MATERIAL AND METHODS: The induction of steatosis and the assessment of oxidative stress level and expression of antioxidant enzymes (superoxide dismutase - SOD, glutathione peroxidase - GPx and catalase - Cat) in HepG2 hepatoma cell line subjected to glucagon and exenatide treatment. RESULTS: Exenatide monotherapy successfully reduced lipid accumulation by 25%. Significant reductions in markers of oxidative stress (reactive oxygen species and malondialdehyde) were obtained in cells subjected to combined treatment with glucagon and exenatide (by 24 and 21%, respectively). Reduced burden of oxidative stress was associated with elevated expression of SOD and GPx but not Cat. CONCLUSIONS: Combined activation of glucagon-like peptide-1 (GLP-1) and glucagon receptors reduces oxidative stress in HepG2 steatotic cell cultures. This observation may stem from increased antioxidative potential.
Assuntos
Catalase , Exenatida , Glucagon , Glutationa Peroxidase , Estresse Oxidativo , Superóxido Dismutase , Humanos , Exenatida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Hep G2 , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/efeitos dos fármacos , Catalase/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Peçonhas/farmacologia , Peptídeos/farmacologia , Hipoglicemiantes/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Background: Fatty liver index (FLI) and hepatic steatosis index (HSI) are serologic scores used to detect liver steatosis. However, their diagnostic performance in people with HIV (PWH) remains unclear. We performed an external validation of FLI and HSI in the Swiss HIV Cohort Study. Methods: We systematically performed vibration-controlled transient elastography (VCTE) among Swiss HIV Cohort Study participants at Bern University Hospital between November 2019 and August 2021. Individuals with viral hepatitis and pregnant women were excluded. We defined liver steatosis as controlled attenuation parameter ≥248 dB/m using VCTE. Model discrimination was assessed with the C-index and model calibration with calibration plots. A decision curve analysis was performed to compare the clinical usefulness of both scores. Results: Of 321 participants, 91 (28.4%) were female, the median age was 51.4 years (IQR, 42-59), 230 (71.7%) were Caucasian, and 164 (51.1%) had a body mass index >25 kg/m2. VCTE-confirmed liver steatosis was present in 158 (49.2%). Overall, 125 (38.9%) had an FLI ≥60, and 128 (39.9%) had an HSI ≥36. At these cutoffs, the C-index to diagnose liver steatosis was 0.85 for FLI (95% CI, .80-.89) and 0.78 for HSI (95% CI, .73-.83). Whereas FLI was well calibrated, HSI overestimated the risk for steatosis. Both models showed a positive net benefit, with FLI having a greater net benefit when compared with HSI. Conclusions: FLI and HSI are valid tools to detect liver steatosis in PWH. FLI should be the preferred score, given its better performance and greater clinical usefulness.
RESUMO
The function of hydroxysteroid dehydrogenase 12 (HSD17B12) in lipid metabolism is poorly understood. To study this further, we created mice with hepatocyte-specific knockout of HSD17B12 (LiB12cKO). From 2 months on, these mice showed significant fat accumulation in their liver. As they aged, they also had a reduced whole-body fat percentage. Interestingly, the liver fat accumulation did not result in the typical formation of large lipid droplets (LD); instead, small droplets were more prevalent. Thus, LiB12KO liver did not show increased macrovesicular steatosis with the increasing fat content, while microvesicular steatosis was the predominant feature in the liver. This indicates a failure in the LD expansion. This was associated with liver damage, presumably due to lipotoxicity. Notably, the lipidomics data did not support an essential role of HSD17B12 in fatty acid (FA) elongation. However, we did observe a decrease in the quantity of specific lipid species that contain FAs with carbon chain lengths of 18 and 20 atoms, including oleic acid. Of these, phosphatidylcholine and phosphatidylethanolamine have been shown to play a key role in LD formation, and a limited amount of these lipids could be part of the mechanism leading to the dysfunction in LD expansion. The increase in the Cidec expression further supported the deficiency in LD expansion in the LiB12cKO liver. This protein is crucial for the fusion and growth of LDs, along with the downregulation of several members of the major urinary protein family of proteins, which have recently been shown to be altered during endoplasmic reticulum stress.
Assuntos
Fígado Gorduroso , Hepatócitos , Gotículas Lipídicas , Camundongos Knockout , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Hepatócitos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Metabolismo dos Lipídeos , Peso Corporal , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismoRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder marked by the buildup of triacylglycerols (TGs) in the liver. It includes a range of conditions, from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH), which can advance to fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD's prevalence is rising globally, estimated between 10% and 50%. The disease is linked to comorbidities such as obesity, type 2 diabetes, insulin resistance, and cardiovascular diseases and currently lacks effective treatment options. Therefore, researchers are focusing on evaluating the impact of adjunctive herbal therapies in individuals with NAFLD. One herbal therapy showing positive results in animal models and clinical studies is fruits from the Vaccinium spp. genus. This review presents an overview of the association between consuming fruits, juices, and extracts from Vaccinium spp. and NAFLD. The search used the following keywords: ((Vaccinium OR blueberry OR bilberry OR cranberry) AND ("non-alcoholic fatty liver disease" OR "non-alcoholic steatohepatitis")). Exclusion criteria included reviews, research notes, book chapters, case studies, and grants. The review included 20 studies: 2 clinical trials and 18 studies on animals and cell lines. The findings indicate that juices and extracts from Vaccinium fruits and leaves have significant potential in addressing NAFLD by improving lipid and glucose metabolism and boosting antioxidant and anti-inflammatory responses. In conclusion, blueberries appear to have the potential to alleviate NAFLD, but more clinical trials are needed to confirm these benefits.
Assuntos
Frutas , Hepatopatia Gordurosa não Alcoólica , Extratos Vegetais , Vaccinium , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/terapia , Humanos , Frutas/química , Vaccinium/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fitoterapia , Sucos de Frutas e VegetaisRESUMO
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation, steatosis and fibrosis. Sympathetic nerves play a critical role in maintaining hepatic lipid homeostasis and regulating fibrotic progression through adrenergic receptors expressed by hepatocytes and hepatic stellate cells; however, the use of sympathetic nerve-focused strategies for the treatment of NAFLD is still in the infancy. Herein, a biomimetic nanoplatform with ROS-responsive and ROS-scavenging properties was developed for the codelivery of retinoic acid (RA) and the adrenoceptor antagonist labetalol (LA). The nanoplatform exhibited improved accumulation and sufficient drug release in the fibrotic liver, thereby achieving precise codelivery of drugs. Integration of adrenergic blockade effectively interrupted the vicious cycle of sympathetic nerves with hepatic stellate cells (HSCs) and hepatocytes, which not only combined with RA to restore HSCs to a quiescent state but also helped to reduce hepatic lipid accumulation. We demonstrated the excellent ability of the biomimetic nanoplatform to ameliorate liver inflammation, fibrosis and steatosis. Our work highlights the tremendous potential of a sympathetic nerve-focused strategy for the management of NAFLD and provides a promising nanoplatform for the treatment of NAFLD.
Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Camundongos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Tretinoína/farmacologia , Tretinoína/química , Tretinoína/uso terapêutico , Masculino , Receptores Adrenérgicos/metabolismo , Humanos , Biomimética/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/químicaRESUMO
Aim Recent developments in ultrasound elastography (UE) and ultrasound attenuation imaging (UA) have enabled the detection of advanced liver fibrosis and steatosis in patients with steatotic liver disease (SLD), which is prevalent worldwide. In patients with SLD, the presence of advanced liver fibrosis determines the risk of hepatocarcinogenesis, and UE and UA are expected to play important roles in liver cancer surveillance. We conducted a questionnaire survey among medical facilities in Saga Prefecture regarding the actual status of awareness and implementation of UE and UA. Methods A 16-item questionnaire was sent to 275 facilities that employed members of the Liver Cancer Control Medical Association in Saga Prefecture. The response rate was 56% (153 facilities), and data from 142 facilities were analyzed after excluding 11 facilities. Results The most common facilities were outpatient clinics (60%) followed by hospitals with ≥100 beds (14%). In 48% of the facilities, an average of 10-49 abdominal ultrasound examinations were performed monthly. The rates of recognition that UE and UA are useful for fibrosis and steatosis were 65% (92/142) and 41% (58/142), respectively. The actual availability of UE and UA in facilities with ultrasound machines was 21% (30/142) and 12% (17/142), respectively; UE and UA were used in 90% (27/30) and 88% (15/17) of these facilities, respectively. Conclusion Even among medical facilities in Saga Prefecture that are active in liver cancer surveillance, awareness of UE and UA is not high. The availability of UE and UA may be inadequate, considering the high prevalence of SLD.
RESUMO
AIMS/INTRODUCTION: The 2023 Delphi consensus recommended the use of new term, metabolic dysfunction-associated steatotic liver disease (MASLD), aiming conceptual shift from the conventional non-alcoholic fatty liver disease (NAFLD). The association between NAFLD and type 2 diabetes mellitus (T2DM) development is well known. This study aimed to examine the correlation between MASLD and T2DM development, comparing their utility as predictors. MATERIALS AND METHODS: This retrospective cohort study obtained data from a medical health checkup program conducted at Asahi University Hospital, Japan, between 2004 and 2021. Logistic regression analysis was used to assess the association between MASLD and incident T2DM over 5 years. To compare the predictive utility of NAFLD and MASLD, receiver operating characteristic curves were drawn, followed by area under the curve (AUC) comparisons. RESULTS: In total, 15,039 participants (59.6% males; median [interquartile range {IQR}] age, 44 [38, 50] years) were included. Out of 2,682 participants meeting the criteria for MASLD, 234 individuals (8.7%) developed T2DM. Multivariate analysis revealed a significantly elevated risk of T2DM in MASLD compared with the reference healthy group (without steatotic liver disease or cardiometabolic risk), presenting an OR of 127.00 (95% CI 40.40-399.00, P < 0.001). The concordance rate of diagnosis between NAFLD and MASLD was 98.7%. The AUC values were 0.799 for NAFLD and 0.807 for MASLD, respectively. Comparative analysis of the AUC showed a statistical difference between NAFLD and MASLD (P < 0.001). CONCLUSIONS: MASLD was shown to be a significant risk factor for incident T2DM, exhibiting a potentially higher predictive capacity than conventional NAFLD.
RESUMO
Intestinal dysbiosis and disrupted bile acid (BA) homeostasis are associated with obesity, but the precise mechanisms remain insufficiently explored. Hepatic protein phosphatase 1 regulatory subunit 3G (PPP1R3G) plays a pivotal role in regulating glycolipid metabolism; nevertheless, its obesity-combatting potency remains unclear. In this study, a substantial reduction was observed in serum PPP1R3G levels in high-body mass index (BMI) and high-fat diet (HFD)-exposed mice, establishing a positive correlation between PPP1R3G and non-12α-hydroxylated (non-12-OH) BA content. Additionally, hepatocyte-specific overexpression of Ppp1r3g (PPP1R3G HOE) mitigated HFD-induced obesity as evidenced by reduced weight, fat mass, and an improved serum lipid profile; hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology. PPP1R3G HOE considerably impacted systemic BA homeostasis, which notably increased the non-12-OH BAs ratio, particularly lithocholic acid (LCA). 16S ribosomal DNA (16S rDNA) sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population, and elevating the relative abundance of Blautia, which exhibited a positive correlation with serum LCA levels. A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiota-dependent. Mechanistically, PPP1R3G HOE markedly suppressed hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol-12α-hydroxylase (CYP8B1), and concurrently upregulated oxysterol 7-α hydroxylase and G protein-coupled BA receptor 5 (TGR5) expression under HFD conditions. Furthermore, LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels. These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis, which may serve as potential therapeutic targets for obesity-related disorders.
RESUMO
OBJECTIVE: A multicenter study in patients with type 2 diabetes mellitus (T2DM) was performed to assess the differences of liver steatosis and fibrosis between lean and nonlean individuals. METHODS: Patients with T2DM from 16 centers were recruited and underwent transient elastography examination for diagnosis of liver steatosis and fibrosis. Clinical information, such as diabetes status, serum lipids profiles, and inflammatory markers, were collected. Potential risk factors of liver steatosis and fibrosis in lean (body mass index [BMI] < 23 kg/m2) and nonlean (BMI ≥ 23 kg/m2) groups were analyzed. RESULTS: A total of 1762 patients were included. The prevalence of liver steatosis and fibrosis in the lean group was 44.7% and 23.4%, respectively. The prevalence of hypertension and cardiovascular disease was higher in lean patients when compared with nonlean group. Lean patients with liver steatosis or fibrosis were older, had longer diabetes duration, lower levels of homeostatic model assessment for insulin resistance and serum lipids. The BMI, visceral fat area, and triglyceride were among the most significant correlators of liver steatosis for both nonlean and lean patients. However, lipid profiles were different between the two groups. Besides, insulin resistance, BMI, and lipid levels were not observed to be associated with fibrosis in the lean group. CONCLUSION: In lean patients with T2DM, liver steatosis and fibrosis were less associated with insulin resistance. Risk factors of liver steatosis were different between lean and nonlean patients, indicating the necessity of risk stratification and tailored management strategies.
RESUMO
Valproic acid (VPA), a common antiepileptic drug, can cause liver steatosis after long-term therapy. However, an impact of ferroptosis on VPA-induced liver steatosis has not been investigated. In the study, treatment with VPA promoted ferroptosis in the livers of mice by elevating ferrous iron (Fe2+) levels derived from the increased absorption by transferrin receptor 1 (TFR1) and the decreased storage by ferritin (FTH1 and FTL), disrupting the redox balance via reduced levels of solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPX4), and augmenting acyl-CoA synthetase long-chain family member 4 (ACSL4) -mediated lipid peroxide generation, accompanied by enhanced liver steatosis. All the changes were significantly reversed by co-treatment with an iron-chelating agent, deferoxamine mesylate (DFO) and a ferroptosis inhibitor, ferrostatin-1 (Fer-1). Similarly, the increases in Fe2+, TFR1, and ACSL4 levels, as well as the decreases in GSH, GPX4, and ferroportin (FPN) levels, were detected in VPA-treated HepG2 cells. These changes were also attenuated after co-treatment with Fer-1. It demonstrates that ferroptosis promotes VPA-induced liver steatosis through iron overload, inhibition of the GSH-GPX4 axis, and upregulation of ACSL4. It offers a potential therapy targeting ferroptosis for patients with liver steatosis following VPA treatment.