Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114627, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39167489

RESUMO

Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Serina C-Palmitoiltransferase , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Humanos , Ligação Proteica
2.
Methods Mol Biol ; 2772: 137-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411811

RESUMO

Plant ER membranes are the major site of biosynthesis of several lipid families (phospholipids, sphingolipids, neutral lipids such as sterols and triacylglycerols). The structural diversity of lipids presents considerable challenges to comprehensive lipid analysis. This chapter will briefly review the various biosynthetic pathways and will detail several aspects of the lipid analysis: lipid extraction, handling, separation, detection, identification, and data presentation. The different tools/approaches used for lipid analysis will also be discussed in relation to the studies to be carried out on lipid metabolism and function.


Assuntos
Lipidômica , Lipídeos de Membrana , Metabolismo dos Lipídeos , Esteróis , Fosfolipídeos
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901815

RESUMO

The chemical diversity of sphingolipids in plants allows the assignment of specific roles to special molecular species. These roles include NaCl receptors for glycosylinositolphosphoceramides or second messengers for long-chain bases (LCBs), free or in their acylated forms. Such signaling function has been associated with plant immunity, with an apparent connection to mitogen-activated protein kinase 6 (MPK6) and reactive oxygen species (ROS). This work used in planta assays with mutants and fumonisin B1 (FB1) to generate varying levels of endogenous sphingolipids. This was complemented with in planta pathogenicity tests using virulent and avirulent Pseudomonas syringae strains. Our results indicate that the surge of specific free LCBs and ceramides induced by FB1 or an avirulent strain trigger a biphasic ROS production. The first transient phase is partially produced by NADPH oxidase, and the second is sustained and is related to programmed cell death. MPK6 acts downstream of LCB buildup and upstream of late ROS and is required to selectively inhibit the growth of the avirulent but not the virulent strain. Altogether, these results provide evidence that a LCB- MPK6- ROS signaling pathway contributes differentially to the two forms of immunity described in plants, upregulating the defense scheme of a non-compatible interaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Transdução de Sinais , Esfingolipídeos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Mar Drugs ; 20(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286464

RESUMO

Three new ceramides (1−3) and three new cerebrosides (4, 8, and 9), along with three previously known cerebrosides (ophidiocerebrosides C (5), D (6), and CE-3-2 (7)), were isolated from a deep-sea starfish species, the orange cookie starfish Ceramaster patagonicus. The structures of 1−4, 8, and 9 were determined by the NMR and ESIMS techniques and also through chemical transformations. Ceramides 1−3 contain iso-C21 or C23 Δ9-phytosphingosine as a long-chain base and have C16 or C17 (2R)-2-hydroxy-fatty acids of the normal type. Cerebroside 4 contains C22 Δ9-sphingosine anteiso-type as a long-chain base and (2R)-2-hydroxyheptadecanoic acid of the normal type, while compounds 8 and 9 contain saturated C-17 phytosphingosine anteiso-type as a long-chain base and differ from each other in the length of the polymethylene chain of (2R)-2-hydroxy-fatty acids of the normal type: C23 in 8 and C24 in 9. All the new cerebrosides (4, 8, and 9) have ß-D-glucopyranose as a monosaccharide residue. The composition of neutral sphingolipids from C. patagonicus was described for the first time. The investigated compounds 1−3, 5−7, and 9 exhibit slight to moderate cytotoxic activity against human cancer cells (HT-29, SK-MEL-28, and MDA-MB-231) and normal embryonic kidney cells HEK293. Compounds 2, 5, and 6 at a concentration of 20 µM inhibit colony formation of MDA-MB-231 cells by 68%, 54%, and 68%, respectively. The colony-inhibiting activity of compounds 2, 5, and 6 is comparable to the effect of doxorubicin, which reduces the number of colonies by 70% at the same concentration.


Assuntos
Ceramidas , Cerebrosídeos , Animais , Humanos , Cerebrosídeos/farmacologia , Cerebrosídeos/química , Ceramidas/farmacologia , Esfingosina , Estrelas-do-Mar , Células HEK293 , Esfingolipídeos , Ácidos Graxos , Monossacarídeos , Doxorrubicina
5.
Front Plant Sci ; 11: 600458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193556

RESUMO

Fumonisin toxins are produced by Fusarium fungal pathogens. Fumonisins are structural analogs of sphingosine and potent inhibitors of ceramide synthases (CerSs); they disrupt sphingolipid metabolism and cause disease in plants and animals. Over the past three decades, researchers have used fumonisin B1 (FB1), the most common fumonisin, as a probe to investigate sphingolipid metabolism in yeast and animals. Although the physiological effects of FB1 in plants have yet to be investigated in detail, forward and reverse genetic approaches have revealed many genes involved in these processes. In this review, we discuss the intricate network of signaling pathways affected by FB1, including changes in sphingolipid metabolism and the effects of these changes, with a focus on our current understanding of the multiple effects of FB1 on plant cell death and plant growth. We analyze the major findings that highlight the connections between sphingolipid metabolism and FB1-induced signaling, and we point out where additional research is needed to fill the gaps in our understanding of FB1-induced signaling pathways in plants.

6.
Plants (Basel) ; 9(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979343

RESUMO

Fumonisin B1 is a mycotoxin produced by Fusarium verticillioides that modifies the membrane properties from animal cells and inhibits complex sphingolipids synthesis through the inhibition of ceramide synthase. The aim of this work was to determine the effect of Fumonisin B1 on the plant plasma membrane when the mycotoxin was added to germinating maize embryos. Fumonisin B1 addition to the embryos diminished plasma membrane fluidity, increased electrolyte leakage, caused a 7-fold increase of sphinganine and a small decrease in glucosylceramide in the plasma membrane, without affecting phytosphingosine levels or fatty acid composition. A 20%-30% inhibition of the plasma membrane H+-ATPase activity was observed when embryos were germinated in the presence of the mycotoxin. Such inhibition was only associated to the decrease in glucosylceramide and the addition of exogenous ceramide to the embryos relieved the inhibition of Fumonisin B1. These results indicate that exposure of the maize embryos for 24 h to Fumonisin B1 allowed the mycotoxin to target ceramide synthase at the endoplasmic reticulum, eliciting an imbalance of endogenous sphingolipids. The latter disrupted membrane properties and inhibited the plasma membrane H+-ATPase activity. Altogether, these results illustrate the mode of action of the pathogen and a plant defense strategy.

7.
Mar Drugs ; 17(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374958

RESUMO

This study evaluated the effects of long-chain bases from sea cucumber (SC-LCBs) on modulation of the gut microbiota and inhibition of obesity in high fat diet-fed mice. Results showed that SC-LCBs exerted significant antiobese effects, which were associated with the inhibition of hyperglycemia and lipid accumulation. SC-LCBs also regulated serum adipocytokines toward to normal levels. SC-LCBs caused significant decreases in Firmicutes, Actinobacteria phylum, and obesity-related bacteria (Desulfovibro, Bifidobacterium, Romboutsia etc. genus). SC-LCBs also elevated Bacteroidetes, Proteobacteria, Verrucomicrobia phylum, and short chain fatty acids (SCFAs)-producing bacteria (Bacteroides, Lactobacillus, Lachnospiraceae_NK4A136_group etc. genus). Moreover, serum and fecal lipoplysaccharide (LPS) concentrations and its dependent toll-line receptor 4 pathway were inhibited by SC-LCBs treatment. SC-LCBs caused increases in fecal SCFAs and their mediated G-protein-coupled receptors proteins. These suggest that SC-LCBs alleviate obesity by altering gut microbiota. Thus, it sought to indicate that SC-LCBs can be developed as food supplement for the obesity control and the human gut health.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Glicoesfingolipídeos/administração & dosagem , Obesidade/dietoterapia , Pepinos-do-Mar/química , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fezes/microbiologia , Glicoesfingolipídeos/isolamento & purificação , Humanos , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Obesidade/etiologia , Obesidade/microbiologia
8.
Adv Biol Regul ; 70: 65-73, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377075

RESUMO

Sphingoid bases (also known as long-chain bases) form the backbone of sphingolipids. Sphingolipids comprise a large group of lipid molecules, which function as the building blocks of biological membranes and play important signaling and regulatory roles within cells. The roles of sphingoid bases in neurotoxicity and neurodegeneration have yet to be fully elucidated, as they are complex and multi-faceted. This comprises a new frontier of research that may provide us with important clues regarding their involvement in neurological health and disease. This paper explores various neurological diseases and conditions which result when the metabolism of sphingoid bases and some of their derivatives, such as sphingosine-1-phosphate and psychosine, becomes compromised due to the inhibition or mutation of key enzymes. Dysregulation of sphingoid base metabolism very often manifests with neurological symptoms, as sphingolipids are highly enriched in the nervous system, where they play important signaling and regulatory roles.


Assuntos
Doenças Neurodegenerativas/metabolismo , Esfingolipídeos/metabolismo , Animais , Ceramidas/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Doenças Neurodegenerativas/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo
9.
Mol Plant ; 11(11): 1328-1343, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30336328

RESUMO

Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses. However, the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review, we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids. We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs. The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells, whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood. A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified. Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.


Assuntos
Plantas/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Estresse Fisiológico/fisiologia
10.
Methods Mol Biol ; 1691: 125-137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043674

RESUMO

Plant ER membranes are the major site of biosynthesis of several lipid families (phospholipids, sphingolipids, neutral lipids such as sterols and triacylglycerols). The structural diversity of lipids presents considerable challenges to comprehensive lipid analysis. This chapter will briefly review the various biosynthetic pathways and will detail several aspects of the lipid analysis: lipid extraction, handling, separation, detection, identification, and data presentation. The different tools/approaches used for lipid analysis will also be discussed in relation to the studies to be carried out on lipid metabolism and function.


Assuntos
Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Retículo Endoplasmático/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos de Membrana/química , Lipídeos de Membrana/isolamento & purificação , Metabolômica/métodos , Fosfolipídeos , Fitosteróis , Triglicerídeos
11.
Cell Rep ; 21(13): 3807-3818, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281829

RESUMO

Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness of aneuploid cells. Remarkably, the fitness of aneuploid cells improves or deteriorates upon genetically decreasing or increasing ceramides, respectively. Combined targeting of serine and sphingolipid synthesis could be exploited to specifically target cancer cells, the vast majority of which are aneuploid.


Assuntos
Aneuploidia , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingolipídeos/biossíntese , Proliferação de Células , Ceramidas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Serina/biossíntese , Transcrição Gênica , Regulação para Cima/genética
12.
J Food Drug Anal ; 25(3): 628-636, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28911649

RESUMO

Endoplasmic reticulum (ER) stress and inflammation can induce hyperglycemia. Long-chain bases (LCBs) from sea cucumber exhibit antihyperglycemic activities. However, their effects on ER stress and inflammation are unknown. We investigated the effects of LCBs on ER stress and inflammatory response in high-fat, fructose diet-induced obesity mice. Reactive oxygen species and free fatty acids were measured. Inflammatory cytokines in serum and their mRNA expressions in epididymal adipose tissues were investigated. Hepatic ER stress-related key genes were detected. c-Jun NH2-terminal kinase and nuclear factor κB inflammatory pathways were also evaluated in the liver. Results showed that LCBs reduced serum and hepatic reactive oxygen species and free fatty acids concentrations. LCBs decreased serum proinflammatory cytokines levels, namely interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, macrophage inflammatory protein 1, and c-reactive protein, and increased anti-inflammatory cytokine IL-10 concentration. The mRNA and protein expressions of these cytokines in epididymal adipose tissues were regulated by LCBs as similar to their circulatory contents. LCBs inhibited phosphorylated c-Jun NH2-terminal kinase and inhibitor κ kinase ß, and nuclear factor κB nuclear translocation. LCBs also inhibited mRNA expression of ER stress markers glucose regulated protein, activating transcription factor 6, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase, and X-box binding protein 1, and phosphorylation of eukaryotic initiation factor-α and inositol requiring enzyme 1α. These results indicate that LCBs can alleviate ER stress and inflammatory response. Nutritional supplementation with LCBs may offer an adjunctive therapy for RE stress-associated inflammation.


Assuntos
Estresse do Retículo Endoplasmático , Pepinos-do-Mar , Animais , Inflamação , Camundongos , Camundongos Obesos , Obesidade
13.
Subcell Biochem ; 86: 249-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023239

RESUMO

Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.


Assuntos
Plantas/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Estrutura Molecular , Fosforilação , Esfingolipídeos/biossíntese , Esfingolipídeos/química , Esfingolipídeos/fisiologia
14.
Food Sci Biotechnol ; 25(6): 1753-1760, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30263471

RESUMO

This study aims to investigate anti-adipogenic effects of long-chain bases from Cucumaria frondosa (Cf-LCBs) in vitro. Results showed that Cf-LCBs inhibited adipocyte differentiation and the expressions of CCAAT/enhancer binding proteins (C/EBPs) and peroxisome proliferators-activated receptor γ (PPARγ). Cf-LCBs increased ß-catenin mRNA and nuclear translocation and increased its target genes, cyclin D1 and c-myc. Cf-LCBs enhanced fizzled and lipoprotein-receptor-related protein5/6 (LRP5/6) expressions, whereas wingless-type MMTV integration site10b (WNT10b) and glycogen syntheses kinase 3ß (GSK3ß) remained unchanged. Cf-LCBs also reduced adipogenesis and recovered WNT/ß-catenin signaling in the cells suffering from 21H7, a ß-catenin inhibitor. In addition, Cf-LCBs decreased triglyceride content and the expressions of lipogenesis genes. Cf-LCBs increased FFA levels and the expressions of lipidolytic factors. Cf-LCBs promoted the phosphorylation of adenosine-monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase. These findings indicate that Cf-LCBs inhibit adipogenesis through activation of WNT/ß-catenin signaling and regulate lipid metabolism via activation of AMPK pathway.

15.
Front Plant Sci ; 6: 55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763001

RESUMO

Due to their sessile condition, plants have developed sensitive, fast, and effective ways to contend with environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate, and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases and non-protein, smaller molecules, such as long-chain bases, phosphatidic acid, and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very diverse stimuli and evoke very different responses. These pleiotropic effects may be explained by the potentiality that every one of these four mediators can be expressed from different sources, cellular location, temporality, or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses.

16.
J Biol Chem ; 289(26): 18466-77, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828506

RESUMO

Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest.


Assuntos
Proteínas de Bactérias/genética , Regulação para Baixo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Vias Biossintéticas , Expressão Gênica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/química
17.
Front Plant Sci ; 5: 3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24478783

RESUMO

Plasmodesmata-intercellular channels that communicate adjacent cells-possess complex membranous structures. Recent evidences indicate that plasmodesmata contain membrane microdomains. In order to understand how these submembrane regions collaborate to plasmodesmata function, it is necessary to characterize their size, composition and dynamics. An approach that can shed light on these microdomain features is based on the use of Arabidopsis mutants in sphingolipid synthesis. Sphingolipids are canonical components of microdomains together with sterols and some glycerolipids. Moreover, sphingolipids are transducers in pathways that display programmed cell death as a defense mechanism against pathogens. The study of Arabidopsis mutants would allow determining which structural features of the sphingolipids are important for the formation and stability of microdomains, and if defense signaling networks using sphingoid bases as second messengers are associated to plasmodesmata operation. Such studies need to be complemented by analysis of the ultrastructure and the use of protein probes for plasmodesmata microdomains and may constitute a very valuable source of information to analyze these membrane structures.

18.
Front Plant Sci ; 4: 341, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24062754

RESUMO

Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL-NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA