RESUMO
An atomic-layer-deposited oxide nanolaminate (NL) structure with 3 dyads where a single dyad consists of a 2-nm-thick confinement layer (CL) (In0.84Ga0.16O or In0.75Zn0.25O), and a barrier layer (BL) (Ga2O3) was designed to obtain superior electrical performance in thin-film transistors (TFTs). Within the oxide NL structure, multiple-channel formation was demonstrated by a pile-up of free charge carriers near CL/BL heterointerfaces in the form of the so-called quasi-two-dimensional electron gas (q2DEG), which leads to an outstanding carrier mobility (µFE) with band-like transport, steep gate swing (SS), and positive threshold voltage (VTH) behavior. Furthermore, reduced trap densities in oxide NL compared to those of conventional oxide single-layer TFTs ensures excellent stabilities. The optimized device with the In0.75Zn0.25O/Ga2O3 NL TFT showed remarkable electrical performance: µFE of 77.1 ± 0.67 cm2/(V s), VTH of 0.70 ± 0.25 V, SS of 100 ± 10 mV/dec, and ION/OFF of 8.9 × 109 with a low operation voltage range of ≤2 V and excellent stabilities (ΔVTH of +0.27, -0.55, and +0.04 V for PBTS, NBIS, and CCS, respectively). Based on in-depth analyses, the enhanced electrical performance is attributed to the presence of q2DEG formed at carefully engineered CL/BL heterointerfaces. Technological computer-aided design (TCAD) simulation was performed theoretically to confirm the formation of multiple channels in an oxide NL structure where the formation of a q2DEG was verified in the vicinity of CL/BL heterointerfaces. These results clearly demonstrate that introducing a heterojunction or NL structure concept into this atomic layer deposition (ALD)-derived oxide semiconductor system is a very effective strategy to boost the carrier-transporting properties and improve the photobias stability in the resulting TFTs.
RESUMO
An ultrathin atomic-layer-deposited (ALD) AlOx gate insulator (GI) was implemented for self-aligned top-gate (SATG) amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). Although the 4.0-nm thick AlOx exhibited ideal insulating properties, the interaction between ALD AlOx and predeposited a-IGZO caused a relatively defective interface, thus giving rise to hysteresis and bias stress instabilities. As analyzed using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and the Hall measurement, the chemical reaction between the ALD precursor and a-IGZO is revealed. This was effectively prevented by preoxidizing a-IGZO with nitrous oxide (N2O) plasma. With 4 nm-AlOx GI and low-defect interfaces, high performance and stability were simultaneously achieved on SATG a-IGZO TFTs, including a near-ideal record-low subthreshold swing of 60.8 mV/dec, a low operation voltage below 0.4 V, a moderate mobility of 13.3 cm2/V·s, a low off-current below 10-13 A, a large on/off ratio over 109, and negligible threshold-voltage shifts less than 0.04 V against various bias-temperature stresses. This work clarifies the vital interfacial reaction between top-gate high-k dielectrics and amorphous oxide semiconductors (AOSs) and further provides a feasible way to remove this obstacle to downscaling SATG AOS TFTs.
RESUMO
Amorphous indium-gallium-zinc oxide (a-IGZO) has become a standard channel ingredient of switching/driving transistors in active-matrix organic light-emitting diode (AMOLED) televisions. However, mobile AMOLED displays with a high pixel density (≥500 pixels per inch) and good form factor do not often employ a-IGZO transistors due to their modest mobility (10-20 cm2/(V s)). Hybrid low-temperature polycrystalline silicon and oxide transistor (LTPO) technology is being adapted in high-end mobile AMOLED devices due to its ultralow power consumption and excellent current drivability. The critical issues of LTPO (including a complicated structure and high fabrication costs) require a search for alternative all-oxide thin-film transistors (TFTs) with low-cost processability and simple device architecture. The atomic layer deposition (ALD) method is a promising route for high-performance all-oxide TFTs due to its unique features, such as in situ cation composition tailoring ability, precise nanoscale thickness controllability, and excellent step coverage. Here, we report an in-depth comparative investigation of TFTs with indium-gallium oxide (IGO)/gallium-zinc oxide (GZO) and indium-zinc oxide (IZO)/GZO heterojunction stacks using an ALD method. IGO and IZO layers with different compositions were tested as a confinement layer (CL), whereas the GZO layer was used as a barrier layer (BL). Optimal IGO/GZO and IZO/GZO channels were carefully designed on the basis of their energy band properties, where the formation of a quasi-two-dimensional electron gas (q2DEG) near the CL/BL interface is realized by rational design of the band gaps and work-functions of the IGO, IZO, and GZO thin films. To verify the effect of q2DEG formation, the device performances and stabilities of TFTs with CL/BL oxide heterojunction stacks were examined and compared to those of TFTs with a single CL layer. The optimized device with the In0.75Zn0.25O/Ga0.80Zn0.20O stack showed remarkable electrical performance: µFE of 76.7 ± 0.51 cm2/(V s), VTH of -0.37 ± 0.19 V, SS of 0.13 ± 0.01 V/dec, and ION/OFF of 2.5 × 1010 with low operation voltage range of ≥2 V and excellent stabilities (ΔVTH of +0.35, -0.67, and +0.08 V for PBTS, NBIS, and CCS, respectively). This study suggests the feasibility of using high-performance ALD-derived oxide TFTs (which can compete with the performance of LTPO transistors) for high-end mobile AMOLED displays.
RESUMO
One-dimensional metal-oxides (1D-MO) nanostructure has been regarded as one of the most promising candidates for high-performance photodetectors due to their outstanding electronic properties, low-cost and environmental stability. However, the current bottlenecks are high energy consumption and relatively low sensitivity. Here, Schottky junctions between nanotubes (NTs) and FTO were fabricated by electrospinning SnO2NTs on FTO glass substrate, and the bias voltage of SnO2NTs photodetectors was as low as â¼1.76 V, which can effectively reduce energy consumption. Additionally, for improving the response and recovery speed of SnO2NTs photodetectors, the NTs were covered with organic/inorganic hybrid perovskite. SnO2NTs/perovskite heterostructure photodetectors exhibit fast response/recovery speed (â¼0.075/0.04 s), and a wide optical response range (â¼220-800 nm). At the same time, the bias voltage of heterostructure photodetectors was further reduced to 0.42 V. The outstanding performance is mainly attributed to the formation of type-II heterojunctions between SnO2NTs and perovskite, which can facilitate the separation of photogenerated carriers, as well as Schottky junction between SnO2NTs and FTO, which reduce the bias voltage. All the results indicate that the rational design of 1D-MO/perovskite heterostructure is a facile and efficient way to achieve high-performance photodetectors.
RESUMO
Ultrahigh-resolution displays for augmented reality (AR) and virtual reality (VR) applications require a novel architecture and process. Atomic-layer deposition (ALD) enables the facile fabrication of indium-gallium zinc oxide (IGZO) thin-film transistors (TFTs) on a substrate with a nonplanar surface due to its excellent step coverage and accurate thickness control. Here, we report all-ALD-derived TFTs using IGZO and HfO2 as the channel layer and gate insulator, respectively. A bilayer IGZO channel structure consisting of a 10 nm base layer (In0.52Ga0.29Zn0.19O) with good stability and a 3 nm boost layer (In0.82Ga0.08Zn0.10O) with extremely high mobility was designed based on a cation combinatorial study of the ALD-derived IGZO system. Reducing the thickness of the HfO2 dielectric film by the ALD process offers high areal capacitance in field-effect transistors, which allows low-voltage drivability and enhanced carrier transport. The intrinsic inferior stability of the HfO2 gate insulator was effectively mitigated by the insertion of an ALD-derived 4 nm Al2O3 interfacial layer between HfO2 and the IGZO film. The optimized bilayer IGZO TFTs with HfO2-based gate insulators exhibited excellent performances with a high field-effect mobility of 74.0 ± 0.91 cm2/(V s), a low subthreshold swing of 0.13 ± 0.01 V/dec, a threshold voltage of 0.20 ± 0.24 V, and an ION/OFF of â¼3.2 × 108 in a low-operation-voltage (≤2 V) range. This promising result was due to the synergic effects of a bilayer IGZO channel and HfO2-based gate insulator with a high permittivity, which were mainly attributed to the effective carrier confinement in the boost layer with high mobility, low free carrier density of the base layer with a low VO concentration, and HfO2-induced high effective capacitance.
RESUMO
Low operation voltage (VSET), which means low power consumption and good stability, is one of the most important factors in designing the resistance switches with high performance. However, the atomic details for the various VSET values of such devices are still lacking, which hinders their further improvement. In the present study, by taking Ag/Ta2O5/Pt (VSET = 0.6 V) and Cu/Ta2O5/Pt (VSET = 2.0 V) as the examples, we have examined the switching mechanisms of these two cation-based devices by using first principle simulation. Several possible reasons have been addressed to explain the much lower VSET of Ag/Ta2O5/Pt than that of Cu/Ta2O5/Pt: (i) the faster diffusion of Ag ions in Ta2O5 compared to Cu ions; (ii) the more preferable nucleation process of Ag ions at Pt/Ta2O5 interface compared to Cu ions; (iii) the lower Schottky barrier height (SBH) of Ag/Ta2O5/Pt than that of Cu/Ta2O5/Pt. On the basis of these results, several key factors have been suggested to design the cation-based resistance switches (oxidizable-metal/Ta2O5/inert-metal) with low VSET values: (i) the weak interaction strength between oxidizable metal ions and Ta2O5 surface; (ii) the low formation energy of oxidizable metal ions on inert electrode; (iii) the low SBH, which could be controlled by tuning the ambient water pressure during the device fabrication process.
RESUMO
NASICON-type structured NaTi2(PO4)3 (NTP) has attracted wide attention as a promising anode material for sodium-ion batteries (SIBs), whereas it still suffer from poor rate capability and cycle stability due to the low electronic conductivity. Herein, the architecture, NTP nanoparticles embedded in the mesoporous carbon matrix, is designed and realized by a facile sol-gel method. Different than the commonly employed potentials of 1.5-3.0 V, the Na(+) storage performance is examined at low operation voltages between 0.01 and 3.0 V. The electrode demonstrates an improved capacity of 208 mAh g(-1), one of the highest capacities in the state-of-the-art titanium-based anode materials. Besides the high working plateau at 2.1 V, another one is observed at approximately 0.4 V for the first time due to further reduction of Ti(3+) to Ti(2+). Remarkably, the anode exhibits superior rate capability, whose capacity and corresponding capacity retention reach 56 mAh g(-1) and 68%, respectively, over 10000 cycles under the high current density of 20 C rate (4 A g(-1)). Worthy of note is that the electrode shows negligible capacity loss as the current densities increase from 50 to 100 C, which enables NTP@C nanocomposite as the prospective anode of SIBs with ultrahigh power density.
RESUMO
One-dimensional photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid (IL) swollen block copolymer (BCP) films. Placement of a polymer/ionic liquid film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2-vinylpyridine) (PS-b-QP2VP) copolymer SC film allowed the development of red (R), green (G), and blue (B) full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3 to +6 V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.