Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.173
Filtrar
1.
Neurotherapeutics ; : e00383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955643

RESUMO

Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.

2.
Heliyon ; 10(12): e33105, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994091

RESUMO

Objective: To explore the effect of Gouqi Nuzhen Liuhe Decoction (GNLHD) on the PI3K/mTOR Signaling Pathway for Premature Ovarian Insufficiency (POI) based on system pharmacology. Methods: First, the system pharmacology approach was used to predict the mechanism of GNLHD. Then, mice were randomly divided into model group, positive group, GNLHD high-dose group, GNLHD medium-dose group, and GNLHD low-dose group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of ovarian tissue under light microscope. The expression levels of estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were detected by enzyme-linked immunosorbent assay. The expressions of PI3K, AKT1 and mTOR proteins in ovarian tissue were detected by immunohistochemistry. Results: The results of system pharmacology showed that GNLHD may regulate biological processes and signaling pathways such as: reproductive structure development, reproductive system development, Oocyte meiosis and so on. Compared with the model group, the levels of E2 in the GNLHD group were increased, and the levels of FSH and LH were decreased (P < 0.05). Compared with the model group, the number of mature follicles in the GNLHD group was significantly increased, the number of atretic follicles was relatively decreased, and the expressions of PI3K, AKT1, and MTOR proteins in the GNLHD group were significantly increased (P < 0.05). Conclusion: GNLHD may improve the ovarian function of POI mice by affecting the expression of PI3K, AKT1 and mTOR proteins, promote the growth and development of follicles, increase the E2 level, reduce FSH and LH level, and maintain the stability of the ovarian internal environment.

3.
Front Oncol ; 14: 1389136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015499

RESUMO

PRKCI is abnormally expressed in various cancers, but its role in osteosarcoma is unknown. This study aimed to explore the biological function of PRKCI in osteosarcoma and its potential molecular mechanism. PRKCI expression was evaluated in osteosarcoma cell lines using Western blot analysis and reverse transcription PCR. The CCK-8 assay, colony formation assay, flow cytometry, Transwell assay, and wound-healing assay were used to detect the proliferation, colony-forming capacity, cell cycle, migration, and invasion of osteosarcoma cells when PRKCI was overexpressed or knocked down. The interaction between PRKCI and SQSTM1 was explored using immunoprecipitation. Finally, the protein molecule expression of the Akt/mTOR signaling pathway in osteosarcoma was detected when PRKCI was knocked down. Our study found that PRKCI was overexpressed in osteosarcoma cell lines. The overexpression of PRKCI promoted the proliferation and colony-forming capacity of osteosarcoma cells, while silencing PRKCI inhibited the proliferation, colony-forming capacity, migration, and invasion of osteosarcoma cells and arrested the cell cycle at the G2/M phase. Both PRKCI and SQSTM1 were overexpressed in osteosarcoma. The expression of PRKCI was only related to histological type, while that of SQSTM1 was not related to clinical characteristics. The expression of PRKCI and SQSTM1 in osteosarcoma was higher than that in chondrosarcoma. Knockdown of PRKCI inhibited the proliferation of osteosarcoma cells by inactivating the Akt/mTOR signaling pathway, suggesting that PRKCI was a potential target for osteosarcoma therapy.

4.
Am J Transl Res ; 16(6): 2190-2211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006282

RESUMO

OBJECTIVES: To investigate the role of the Wuwei Zishen formula (WWZSF) in treating and preventing perimenopausal syndrome (PMS) and to understand its mechanism. METHODS: Network pharmacology and molecular docking was used to predict active compounds, potential targets, and pathways for PMS treatment using WWZSF. Female Sprague-Dawley (SD) rats were induced with D-galactose (D-gal) to establish a PMS model and treated with Kunbao pill (KBP) and WWZSF. Estrus cycles were observed using vaginal smears. Serum sex hormones were measured using the enzyme-linked immunosorbent assay (ELISA). Histological changes in the uterus and ovaries were evaluated using hematoxylin-eosin staining (HE). Western blot was used to assess the protein expression levels of Cleaved Caspase-3, p62, BAX/Bcl-2, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in the uterus and ovaries. RESULTS: A total of 70 active compounds and 440 potential targets were screened out. Important targets and pathways, including AKT1, Bcl-2, Caspase-3, mTOR, and the PI3K/AKT/mTOR pathways, and molecular docking verified their high affinities to key WWZSF components. In vivo experiments showed that WWZSF can ameliorate the morphological abnormalities of the uterus and ovaries, increase sex hormone levels and organ index, and restore the estrus cycles in PMS rats. Moreover, the western blot results showed decreased Cleaved Caspase-3 and BAX/Bcl-2 protein levels in the ovarian and uterine tissues after WWZSF therapy. Concurrently, there was an increase in the expression of p62 and the ratios of p-AKT/AKT, p-mTOR/mTOR, and p-PI3K/PI3K. CONCLUSION: The PI3K/AKT/mTOR signaling pathway-mediated apoptosis and autophagy pathways may be how WWZSF efficiently reduces PMS.

5.
J Clin Transl Hepatol ; 12(7): 625-633, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38993511

RESUMO

Background and Aims: The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. Methods: Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. Results: Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. Conclusions: Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.

6.
Heliyon ; 10(12): e32998, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988566

RESUMO

The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.

7.
Cell Rep ; 43(7): 114490, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38990720

RESUMO

Although oral tolerance is a critical system in regulating allergic disorders, the mechanisms by which dietary factors regulate the induction and maintenance of oral tolerance remain unclear. To address this, we explored the differentiation and function of various immune cells in the intestinal immune system under fasting and ad libitum-fed conditions before oral ovalbumin (OVA) administration. Fasting mitigated OVA-specific Treg expansion, which is essential for oral tolerance induction. This abnormality mainly resulted from functional defects in the CX3CR1+ cells responsible for the uptake of luminal OVA and reduction of tolerogenic CD103+ dendritic cells. Eventually, fasting impaired the preventive effect of oral OVA administration on asthma and allergic rhinitis development. Specific food ingredients, namely carbohydrates and arginine, were indispensable for oral tolerance induction by activating glycolysis and mTOR signaling. Overall, prior food intake and nutritional signals are critical for maintaining immune homeostasis by inducing tolerance to ingested food antigens.

8.
Chin Clin Oncol ; 13(3): 34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38984487

RESUMO

BACKGROUND: Breast cancer has become one of the leading causes of cancer deaths and is the most frequently diagnosed cancer among females worldwide. Despite advances in breast cancer therapy, metastatic disease in most patients will eventually progress due to the development of de novo or secondary resistance. Thus, it is extremely important to seek novel drugs with high effectiveness and low toxicity for systematic therapy. METHODS: We applied a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in this study to analyze and evaluate the cytotoxic activity of oleanolic acid (OA) and its derivatives in three types of breast cancer cell lines (MDA-MB-231, MCF-7, and MDA-MB-453). A flow cytometry assay was performed to access the mechanisms of apoptosis and cell cycle analysis in SZC010 in MDA-MB-453 cells. Apoptosis- and cyclin-related proteins were evaluated by western blot. The key proteins of the NF-κB and PI3K-Akt-mTOR signaling pathway were also evaluated by western blot. RESULTS: Our results revealed that all OA derivatives were more effective than OA in three types of breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-453). Among these seven OA derivatives, SZC010 exhibited the most potent cytotoxicity in MDA-MB-453 cells. Additionally, we observed that SZC010 treatment induced dose-and time-dependent growth inhibition in MDA-MB-453 cells. Furthermore, we demonstrated that SZC010 induced growth arrest in the G2/M phase and apoptosis by inhibition of NF-κB activation via the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: Our data indicate that the novel OA derivative, SZC010, has great potential in breast cancer therapy.


Assuntos
Apoptose , Neoplasias da Mama , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células MCF-7
9.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3295-3301, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041092

RESUMO

This study aims to reveal the effects of the herb pair Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma(AR-SMRR) on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) pathway and autophagy in the lung tissue of the rat model of acute lung injury(ALI). Fifty adult male SD rats were randomized into sham, model, autophagy inhibition(intraperitoneal injection of chloroquine at 10 mg·kg~(-1)), autophagy induction(intraperitoneal injection of rapamycin at 15 mg·kg~(-1)), and AR-SMRR(5 g·kg~(-1), gavage) groups. The rats in the sham group received intratracheal instillation of normal saline, and those in other groups received intratracheal instillation of lipopolysaccharide(LPS, 5 mg·kg~(-1)) for the modeling of ALI. Seven days before the operation, the rats in the sham and model groups were administrated with normal saline, and those in other groups with corresponding drugs. Specimens were collected 24 h after modeling. The pathological changes of the lung tissue were observed under a light microscope. The lung wet/dry weight ratio and the lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured. Western blot was employed to measure the protein levels of microtubule-associated protein 1-light chain 3(LC3), beclin-1, p62, PI3K, Akt, and mTOR. Compared with the sham group, the model group showed increased histopathological score of the lung tissue, lung wet/dry weight ratio, and LDH activity and protein concentration in BALF. Autophagy inhibition further increased these indicators compared with the model group, while autophagy induction and AR-SMRR lowered the levels. In addition, AR-SMRR up-regulated the protein levels of LC3-Ⅱ and beclin-1, down-regulated the expression of p62, and inhibited the expression of p-PI3K, p-Akt, and p-mTOR in the lung tissue of ALI rats. The findings suggest that AR-SMRR can alleviate the lung injury and edema in the rat model of ALI induced by LPS by enhancing autophagy via down-regulating PI3K/Akt/mTOR signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Autofagia , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Masculino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Salvia miltiorrhiza/química , Astragalus propinquus/química , Rizoma/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Humanos
10.
J Transl Med ; 22(1): 675, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039509

RESUMO

BACKGROUND: Effects of preoperative drinks on muscle metabolism are unclear despite general recommendations. The aim of the present study was therefore to compare metabolic effects of a preoperative oral nutrition drink, recommended by protocols for enhanced recovery after surgery (ERAS), compared to overnight preoperative peripheral total parenteral nutrition (PPN) on skeletal muscle metabolism in patients aimed at major gastrointestinal cancer surgery. METHODS: Patients were randomized, based on diagnosis and clinical characteristics, to receive either a commercial carbohydrate-rich nutrition drink (Drink); or overnight (12 h) peripheral parenteral nutrition (PPN) as study regimens; compared to isotone Ringer-acetate as Control regimen. Arterial blood- and abdominal muscle tissue specimens were collected at start of surgery. Blood chemistry included substrate- and hormone concentrations. Muscle mRNA transcript analyses were performed by microarray and evaluated for changes in gene activities by Gene Ontology algorithms. RESULTS: Patient groups were comparable in all measured preoperative assessments. The Nutrition Drink had significant metabolic alterations on muscle glucose metabolism (p < 0.05), without any significant effects on amino acid- and protein metabolism. PPN showed similar significant effects on glucose metabolism as Drinks (p < 0.05), but indicated also major positive effects on amino acid- (p < 0.001) and protein anabolism (p < 0.05), particularly by inhibition of muscle protein degradation, related to both ubiquitination of proteins and autophagy/lysosome pathways (p < 0.05). CONCLUSION: Conventional overnight preoperative PPN seems effective to induce and support improved muscle protein metabolism in patients aimed at major cancer surgery while preoperative oral carbohydrate loading, according to ERAS-protocols, was ineffective to improve skeletal muscle catabolism and should therefore not be recommended before major cancer surgery. Trial registration Clinical trials.gov: NCT05080816, Registered June 10th 2021- Retrospectively registered. https://clinicaltrials.gov/study/NCT05080816.


Assuntos
Glucose , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Masculino , Feminino , Glucose/metabolismo , Idoso , Pessoa de Meia-Idade , Cuidados Pré-Operatórios , Ontologia Genética , Pesquisa Translacional Biomédica , Dieta da Carga de Carboidratos , Proteínas Musculares/metabolismo , Neoplasias/cirurgia , Nutrição Parenteral Total , Administração Oral
11.
Adv Sci (Weinh) ; : e2404937, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962935

RESUMO

Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.

12.
Oncol Res ; 32(7): 1209-1219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948021

RESUMO

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Assuntos
Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Doxorrubicina/farmacologia
13.
Aging (Albany NY) ; 162024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967628

RESUMO

OBJECTIVE: This investigation seeks to elucidate the role of the Granulocyte Colony-Stimulating Factor (G-CSF) in the progression of hepatocellular carcinoma (HCC), as well as the impact of the substance on related signaling pathways within the disease matrix. METHODS: Nude mouse tumor-bearing assay was used to detect tumor progression. Levels of Mannose/CD68 and CD34/Mannose within these samples and the concentrations of Mannose and inducible Nitric Oxide Synthase (iNOS) in macrophages were quantified using immunofluorescence techniques. The angiogenic capability was assessed via tube formation assays, and protein expressions of G-CSF, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-beta (TGF-ß), Matrix Metalloproteinases 2 and 9 (MMP2/9), SH2-containing protein tyrosine phosphatase-2 (SHP-2), phosphorylated PI3K/total PI3K (P-PI3K/t-PI3K), phosphorylated AKT/total AKT (P-AKT/t-AKT), and phosphorylated mTOR/total mTOR (P-mTOR/t-mTOR) were measured through Western Blot analysis in both tumor tissues and macrophages. RESULTS: Administration of G-CSF resulted in a marked augmentation of tumor volume. Macrophage Mannose expression was significantly elevated upon G-CSF treatment, while iNOS levels were conspicuously diminished. G-CSF substantially enhanced the secretion of VEGF, TGF-ß, and MMPs in tumor tissues. Macrophage parameters, following incubation in G-CSF pre-treated conditioned medium, indicated enhanced tube-forming capabilities relative to the control, an effect mitigated by the introduction of specific inhibitors. Furthermore, the G-CSF group exhibited a notable reduction in SHP-2 expression, alongside a substantial elevation in the phosphorylation levels of the PI3K/AKT/mTOR pathway proteins across all tumor-bearing paradigms. CONCLUSION: G-CSF ostensibly facilitates the advancement of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling cascade within Tumor-Associated Macrophages (TAM).

14.
J Nutr Biochem ; : 109702, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025456

RESUMO

Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.

15.
Apoptosis ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824477

RESUMO

The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.

16.
J Agric Food Chem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841893

RESUMO

Alzheimer's disease (AD), one of the neurodegenerative disorders, is highly correlated with the abnormal hyperphosphorylation of Tau and aggregation of ß-amyloid (Aß). Oxidative stress, neuroinflammation, and abnormal autophagy are key drivers of AD and how they contribute to neuropathology remains largely unknown. The flavonoid compound pongamol is reported to possess a variety of pharmacological activities, such as antioxidant, antibacterial, and anti-inflammatory. This study investigated the neuroprotective effect and its mechanisms of pongamol in lipopolysaccharide (LPS)-induced BV2 cells, d-galactose/sodium nitrite/aluminum chloride (d-gal/NaNO2/AlCl3)-induced AD mice, and Caenorhabditis elegans models. Our research revealed that pongamol reduced the release of inflammatory factors IL-1ß, TNF-α, COX-2, and iNOS in LPS-induced BV2 cells. Pongamol also protected neurons and significantly restored memory function, inhibited Tau phosphorylation, downregulated Aß aggregation, and increased oxidoreductase activity in the hippocampus of AD mice. In addition, pongamol reversed the nuclear transfer of NF-κB and increased the levels of Beclin 1 and LC3 II/LC3 I. Most importantly, the anti-inflammatory and promoter autophagy effects of pongamol may be related to the regulation of the Akt/mTOR signaling pathway. In summary, these results showed that pongamol has a potential neuroprotective effect, which greatly enriched the research on the pharmacological activity of pongamol for improving AD.

17.
Neurochem Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837094

RESUMO

Epilepsy is a common neurological disorder, and the exploration of potential therapeutic drugs for its treatment is still ongoing. Vitamin D has emerged as a promising treatment due to its potential neuroprotective effects and anti-epileptic properties. This study aimed to investigate the effects of vitamin D on epilepsy and neuroinflammation in juvenile mice using network pharmacology and molecular docking, with a focus on the mammalian target of rapamycin (mTOR) signaling pathway. Experimental mouse models of epilepsy were established through intraperitoneal injection of pilocarpine, and in vitro injury models of hippocampal neurons were induced by glutamate (Glu) stimulation. The anti-epileptic effects of vitamin D were evaluated both in vivo and in vitro. Network pharmacology and molecular docking analysis were used to identify potential targets and regulatory pathways of vitamin D in epilepsy. The involvement of the mTOR signaling pathway in the regulation of mouse epilepsy by vitamin D was validated using rapamycin (RAPA). The levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were assessed by enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining was used to analyze the apoptosis of hippocampal neurons. In in vivo experiments, vitamin D reduced the Racine scores of epileptic mice, prolonged the latency of epilepsy, and inhibited the production of TNF-α, IL-1ß, and IL-6 in the hippocampus. Furthermore, network pharmacology analysis identified RAF1 as a potential target of vitamin D in epilepsy, which was further confirmed by molecular docking analysis. Additionally, the mTOR signaling pathway was found to be involved in the regulation of mouse epilepsy by vitamin D. In in vitro experiments, Glu stimulation upregulated the expressions of RAF1 and LC3II/LC3I, inhibited mTOR phosphorylation, and induced neuronal apoptosis. Mechanistically, vitamin D activated the mTOR signaling pathway and alleviated mouse epilepsy via RAF1, while the use of the pathway inhibitor RAPA reversed this effect. Vitamin D alleviated epilepsy symptoms and neuroinflammation in juvenile mice by activating the mTOR signaling pathway via RAF1. These findings provided new insights into the molecular mechanisms underlying the anti-epileptic effects of vitamin D and further supported its use as an adjunctive therapy for existing anti-epileptic drugs.

18.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892371

RESUMO

The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.


Assuntos
Arginina , Fibras Musculares Esqueléticas , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Arginina/metabolismo , Arginina/farmacologia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Linhagem Celular
19.
Front Biosci (Landmark Ed) ; 29(6): 212, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38940038

RESUMO

BACKGROUND: Gastric cancer (GC) is a leading cause of cancer-associated death worldwide. Its molecular mechanisms, especially concerning autophagy and various signaling pathways, are not fully understood. Fatty Acid Binding Protein 6 (FABP6) and RE1 Silencing Transcription Factor (REST) emerge as potential key players in this context. This study sought to analyze the functional relationship of FABP6 and REST concerning autophagy and their implications on the Akt/mTOR signaling pathway within GC cells. METHODS: A comprehensive bioinformatics approach was used to identify key prognostic markers in GC. The effects of FABP6 and REST on autophagy along with Akt/mTOR signaling pathways were analyzed by techniques including Western blotting (WB), flow cytometry, Transwell assay, dual luciferase reporter assay, and others. RESULTS: FABP6 was identified as overexpressed in GC, linked with poor prognosis. FABP6 silencing reduces GC cell proliferation, induces S- and G2-phase arrest, and downregulates cyclins CDK2 and CDK4. It also inhibited GC cell invasion/migration and autophagy, effects that were counteracted by MG132. When combined with PI3K inhibitor LY294002c, FABP6 knockdown showed synergistic anti-proliferative effects, modulating the Akt/mTOR pathway. Besides, the transcription factor REST has been shown to directly regulate FABP6 expression, affecting autophagy and the Akt/mTOR signaling pathway in a FABP6-dependent manner. CONCLUSIONS: REST positively regulates autophagy and negatively affects the Akt/mTOR signaling pathway in GC cells in a FABP6-dependent manner, providing valuable insights into regulatory networks involving FABP6 and REST.


Assuntos
Autofagia , Proteínas de Ligação a Ácido Graxo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Serina-Treonina Quinases TOR , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
20.
J Agric Food Chem ; 72(26): 14769-14785, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912664

RESUMO

Stigmasterol (ST), a phytosterol found in food, has various biological activities. However, the effect of ST on milk synthesis in dairy cows remains unclear. Therefore, bovine primary mammary epithelial cells (BMECs) were isolated, cultured, and treated with ST to determine the effect of ST on milk synthesis. The study revealed that 10 µM ST significantly increased milk synthesis in BMECs by activating the mammalian target of rapamycin (mTOR) signaling pathway. Further investigation revealed that this activation depends on the regulatory role of oxysterol binding protein 5 (ORP5). ST induces the translocation of ORP5 from the cytoplasm to the lysosome, interacts with the mTOR, recruits mTOR to target the lysosomal surface, and promotes the activation of the mTOR signaling pathway. Moreover, ST was found to increase ORP5 protein levels by inhibiting its degradation via the ubiquitin-proteasome pathway. Specifically, the E3 ubiquitin ligase membrane-associated cycle-CH-type finger 4 (MARCH4) promotes the ubiquitination and subsequent degradation of ORP5. ST mitigates the interaction between MARCH4 and ORP5, thereby enhancing the structural stability of ORP5 and reducing its ubiquitination. In summary, ST stabilizes ORP5 by inhibiting the interaction between MARCH4 and ORP5, thereby activating mTOR signaling pathway and enhancing milk synthesis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Leite , Transdução de Sinais , Serina-Treonina Quinases TOR , Ubiquitinação , Animais , Bovinos , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Leite/química , Leite/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA