Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 35: 135-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38312519

RESUMO

Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-ß1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.

2.
Cell Metab ; 33(12): 2445-2463.e8, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784501

RESUMO

Apoptotic cell clearance by macrophages (efferocytosis) promotes resolution signaling pathways, which can be triggered by molecules derived from the phagolysosomal degradation of apoptotic cells. We show here that nucleotides derived from the hydrolysis of apoptotic cell DNA by phagolysosomal DNase2a activate a DNA-PKcs-mTORC2/Rictor pathway that increases Myc to promote non-inflammatory macrophage proliferation. Efferocytosis-induced proliferation expands the pool of resolving macrophages in vitro and in mice, including zymosan-induced peritonitis, dexamethasone-induced thymocyte apoptosis, and atherosclerosis regression. In the dexamethasone-thymus model, hematopoietic Rictor deletion blocked efferocytosing macrophage proliferation, apoptotic cell clearance, and tissue resolution. In atherosclerosis regression, silencing macrophage Rictor or DNase2a blocked efferocyte proliferation, apoptotic cell clearance, and plaque stabilization. In view of previous work showing that other types of apoptotic cell cargo can promote resolution in individual efferocytosing macrophages, the findings here suggest that signaling-triggered apoptotic cell-derived nucleotides can amplify this benefit by increasing the number of these macrophages.


Assuntos
Macrófagos , Fagocitose , Animais , Apoptose/genética , Proliferação de Células , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/genética
3.
J Cell Mol Med ; 24(21): 12813-12825, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979037

RESUMO

Obesity-induced activation and proliferation of resident macrophages and infiltration of circulating monocytes in adipose tissues contribute to adipose tissue inflammation and insulin resistance. These effects further promote the development of metabolic syndromes, such as type 2 diabetes, which is one of the most prevalent health conditions severely threatening human health worldwide. Our study examined the potential molecular mechanism employed by fibroblast growth factor 1 (FGF1) to improve insulin sensitivity. The leptin receptor-deficient obese mice (db/db) served as an insulin-resistant model. Our results demonstrated that FGF1-induced amelioration of insulin resistance in obese mice was related to the decreased levels of pro-inflammatory adipose tissue macrophages (ATMs) and plasma inflammatory factors. We found that FGF1 enhanced the adipocyte mTORC2/Rictor signalling pathway to inhibit C-C chemokine ligand 2 (CCL2) production, the major cause of circulating monocytes infiltration, activation and proliferation of resident macrophages in adipose tissues. Conversely, these alleviating effects of FGF1 were substantially abrogated in adipocytes with reduced expression of mTORC2/rictor. Furthermore, a model of adipocyte-specific mTORC2/Rictor-knockout (AdRiKO) obese mice was developed to further understand the in vitro result. Altogether, these results demonstrated adipocyte mTORC2/Rictor was a crucial target for FGF1 function on adipose tissue inflammation and insulin sensitivity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/patologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Inflamação/patologia , Resistência à Insulina , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Obesidade/complicações , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
4.
Oncotarget ; 8(15): 24491-24505, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445935

RESUMO

Mammalian Target of Rapamycin complex 2 (mTORC2) and its regulatory component Rapamycin-insensitive companion of mTOR (RICTOR) are increasingly recognized as important players in human cancer development and progression. However, the role of RICTOR in human pancreatic ductal adenocarcinoma (PDAC) is unclear so far. Here, we sought to analyze the effects of RICTOR inhibition in human pancreatic cancer cell lines in vitro and in vivo. Furthermore, RICTOR expression was determined in human PDAC samples. Results demonstrate that depletion of RICTOR with siRNA (transient knock-down) or shRNA (stable knock-down) has an inhibitory effect on tumor growth in vitro. Moreover, RICTOR inhibition led to impaired phosphorylation/activity of AGC kinases (AKT, SGK1). Interestingly, hypoxia-induced expression of hypoxia-induced factor-1α (HIF-1α) was diminished and secretion of vascular-endothelial growth factor-A (VEGF-A) was impaired upon targeting RICTOR. Stable RICTOR knock-down led to significant inhibition of tumor growth in subcutaneous and orthotopic tumor models which was accompanied by significant reduction of tumor cell proliferation. Finally, immunohistochemical analyses of 85 human PDAC samples revealed significantly poorer survival in patients with higher RICTOR expression. In conclusion, these findings provide first evidence for mTORC2/RICTOR as an attractive novel target for treatment of human PDAC.


Assuntos
Neoplasias Pancreáticas/genética , Proteína Companheira de mTOR Insensível à Rapamicina/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA