Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415809

RESUMO

Despite intense research on mice, the transcriptional regulation of neocortical neurogenesis remains limited in humans and non-human primates. Cortical development in rhesus macaque is known to recapitulate multiple facets of cortical development in humans, including the complex composition of neural stem cells and the thicker supragranular layer. To characterize temporal shifts in transcriptomic programming responsible for differentiation from stem cells to neurons, we sampled parietal lobes of rhesus macaque at E40, E50, E70, E80, and E90, spanning the full period of prenatal neurogenesis. Single-cell RNA sequencing produced a transcriptomic atlas of developing parietal lobe in rhesus macaque neocortex. Identification of distinct cell types and neural stem cells emerging in different developmental stages revealed a terminally bifurcating trajectory from stem cells to neurons. Notably, deep-layer neurons appear in the early stages of neurogenesis, while upper-layer neurons appear later. While these different lineages show overlap in their differentiation program, cell fates are determined post-mitotically. Trajectories analysis from ventricular radial glia (vRGs) to outer radial glia (oRGs) revealed dynamic gene expression profiles and identified differential activation of BMP, FGF, and WNT signaling pathways between vRGs and oRGs. These results provide a comprehensive overview of the temporal patterns of gene expression leading to different fates of radial glial progenitors during neocortex layer formation.


Assuntos
Neocórtex , Células-Tronco Neurais , Feminino , Gravidez , Animais , Camundongos , Transcriptoma , Macaca mulatta , Perfilação da Expressão Gênica
2.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37442136

RESUMO

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Assuntos
Córtex Cerebral , Macaca , Análise de Célula Única , Transcriptoma , Animais , Humanos , Camundongos , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Macaca/metabolismo , Transcriptoma/genética
3.
J Neurophysiol ; 113(2): 434-44, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355960

RESUMO

Some neurons in early visual cortex are highly selective for the position of oriented edges in their receptive fields (simple cells), whereas others are largely position insensitive (complex cells). These characteristics are reflected in their sensitivity to the spatial phase of moving sine-wave gratings: simple cell responses oscillate at the fundamental frequency of the stimulus, whereas this is less so for complex cells. In primates, when assessed at high stimulus contrast, simple cells and complex cells are roughly equally represented in the first visual cortical area, V1, whereas in the second visual area, V2, the majority of cells are complex. Recent evidence has shown that phase sensitivity of complex cells is contrast dependent. This has led to speculation that reduced contrast may lead to changes in the spatial structure of receptive fields, perhaps due to changes in how feedforward and recurrent signals interact. Given the substantial interconnections between V1 and V2 and recent evidence for the emergence of unique functional capacity in V2, we assess the relationship between contrast and phase sensitivity in the two brain regions. We show that a substantial proportion of complex cells in macaque V1 exhibit significant increases in phase sensitivity at low contrast, whereas this is rarely observed in V2. Our results support a degree of hierarchical processing from V1 to V2 with the differences possibly relating to the fact that V1 combines both subcortical and cortical input, whereas V2 receives input purely from cortical circuits.


Assuntos
Sensibilidades de Contraste/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Macaca fascicularis , Macaca nemestrina , Microeletrodos , Neurônios/fisiologia , Estimulação Luminosa , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA