Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(19): 11251-11258, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699857

RESUMO

Engineered nanoparticles (ENPs) have been increasingly used in agricultural operations, leading to an urgent need for robust methods to analyze co-occurring ENPs in plant tissues. In response, this study advanced the simultaneous extraction of coexisting silver, cerium oxide, and copper oxide ENPs in lettuce shoots and roots using macerozyme R-10 and analyzed them by single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, the standard stock suspensions of the ENPs were stabilized with citrate, and the long-term stability (up to 5 months) was examined for the first time. The method performance results displayed satisfactory accuracies and precisions and achieved low particle concentration and particle size detection limits. Significantly, the oven drying process was proved not to impact the properties of the ENPs; therefore, oven-dried lettuce tissues were used in this study, which markedly expanded the applicability of this method. This robust methodology provides a timely approach to characterize and quantify multiple coexisting ENPs in plants.


Assuntos
Lactuca , Espectrometria de Massas , Nanopartículas Metálicas , Raízes de Plantas , Nanopartículas Metálicas/química , Lactuca/química , Espectrometria de Massas/métodos , Raízes de Plantas/química , Cobre/análise , Brotos de Planta/química , Prata/química , Cério/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA