Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(32)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38701833

RESUMO

In this work we report magnetic properties of the orthorhombic perovskite Lu0.9Sr0.1Cr0.5Fe0.5O3synthesized by a wet chemical method. As in LuCr0.5Fe0.5O3the compound with Sr shows the magnetization reversal phenomenon, but the magnetic order and the compensation temperature occur at higher temperatures. Interestingly, in M vs H curves a hysteresis loop is observed when Cr4+and Cr3+ions coexist as a consequence of the aliovalent substitution of Lu3+by Sr2+in the B sites of the perovskite. To explain this behavior, we performed numerical simulations with a magnetic model for Lu1-xSrxCr0.5Fe0.5O3perovskites withx= 0 andx= 0.1. We found that the ferromagnetic coupling of Fe3+and Cr4+through superexchange interactions (according the empiric Goodenough-Kanamori-Anderson rules) increases the magnetization at high fields and that the presence of ferromagnetic clusters explains the hysteretic behavior found in simulations.

2.
ACS Nano ; 18(12): 8641-8648, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488387

RESUMO

Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experiments have not yet explored different wavelengths and the nonlinear excitation regime of magnons required for computational tasks. We report on the magnetization reversal of individual 20 nm thick Ni81Fe19 (Py) nanostripes integrated onto 113 nm thick yttrium iron garnet (YIG). We suppress direct interlayer exchange coupling by an intermediate layer, such as Cu and SiO2. By exciting magnons in YIG with wavelengths λ down to 148 nm we observe the reversal of the integrated ferromagnets in a small external field of 14 mT. Magnons with a small wavelength of λ = 195 nm, i.e., twice the width of the Py nanostripes, induced the reversal at a spin-precessional power of only about 1 nW after propagating over 15 µm in YIG. Such small power value has not been reported so far. Considerations based on dynamic dipolar coupling explain the observed wavelength dependence of the magnon-induced reversal efficiency. For an increased power, the stripes reversed in an external field of only about 1 mT. Our findings are important for the practical implementation of nonvolatile storage of broadband magnon signals in YIG by means of bistable nanomagnets without the need of an appreciable global magnetic field.

3.
Nanotechnology ; 35(22)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465835

RESUMO

We have investigated the size dependent energy barrier regarding the transition between magnetic vortex and collinear states in dense arrays of magnetic cap structures hosting magnetic vortices. The cap structures were formed by the deposition of soft magnetic thin films on top of large arrays of densely packed polystyrene spheres. The energy barrier associated with the magnetic field assisted switching from a collinear magnetic state to a non-uniform vortex state (or vice versa) was tuned by tailoring the diameter and thickness of the soft magnetic caps. At a sufficient temperature, known as the bifurcation temperature, the thermal energy overcomes this energy barrier and magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In magnetic caps with a fixed thickness, the bifurcation temperature decreases with increasing cap diameter. On the other hand, for a fixed diameter, the bifurcation temperature increases with an increase in film thickness of the cap structure. This study demonstrates that the bifurcation temperature can be easily tailored by changing the magnetostatic energy contribution which in turn affects the energy barrier and thus the magnetic bistability.

4.
J Phys Condens Matter ; 36(22)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408376

RESUMO

Ni4Nb2O9is an insulating compensated ferrimagnet withTN= 77 K andTcomp= 33 K. We report here the study of the magnetic anisotropy using millimeter-size crystals grown in an image furnace. The magnetization measurements, vs temperature, performed withHaligned along the three main crystallographic axes, show similar Curie-Weiss temperatures (Θp≈ 190 K) and rather similar effective paramagnetic moments (from 3.5µBto 3.6µB). This suggests that the strongest magnetic interaction is the antiferromagnetic one, coupling the ferromagnetic distorted honeycomb layers and zigzag ribbons via face sharing NiO6octahedra. This strong antiferromagnetic coupling is supported by DFT calculations that do not evidence any inter site ferromagnetic interaction, leading to total compensation between magnetic moments of both Ni2+sites. Measurements vs magnetic field belowTNreveal an anisotropic behaviour, with square magnetization loops forHin theabplane, whereas linearM(H) curves without hysteresis are observed forH‖c. This anisotropy betweenabplane andcaxis occurs also in the magnetization reversal (MR), which is observed in theabplane only. Starting fromM(H) virgin curves collected just belowTcomp= 33 K withH‖aorH‖b, the memory-like effect was tested through magnetization switching induced byHorTalternating changes. BelowTcomp, smallerHis needed to switchMsymmetrically forHalongbthan alonga, and, forTswitching (2 K interval, constantH), a largerMchange is obtained alongathan alongb. The comparison with ferrimagnetic oxides which exhibit MR, like spinels or rare earth orthoferrites, shows that Ni4Nb2O9is unique since only one magnetic cation over two sites in octahedral coordination is at play, thus providing a unique platform to studyMswitching but also a challenge for theoretical interpretation.

5.
J Magn Reson ; 359: 107624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241847

RESUMO

Rapid MR imaging of slowly relaxing samples is often challenging. The most commonly used solutions are found in multi spin-echo (RARE) sequences or gradient-echo (GE) sequences, which allow faster imaging of such samples with multiple acquisitions of k-space lines per excitation or imaging with very short repetition times (TRs). Another solution is the use of a spin-echo (SE) sequence superimposed with a driven equilibrium Fourier transform (DEFT) method. Such a (DE-SE) imaging sequence has two refocusing RF pulses that produce two spin-echoes. In the first echo, the signal is acquired from the k-space line, and in the second echo, a 90° RF pulse is applied, typically 180° out of phase with respect to the excitation RF pulse. This last RF pulse allows almost complete magnetization reversal back to the longitudinal orientation with minimal magnetization loss. The DE-SE sequence and its RARE variant are widely used in clinical imaging, but its use in MR microscopy has some peculiarities related to the usually less perfect RF pulse flip angles and diffusion. In this study, their effects are first theoretically analyzed and later verified by experiments on test samples performed on a 9.4 T system for MR microscopy. Experiments on a water-filled tube for TE = 3.4 ms and TR = 25-200 ms showed that the DE-SE sequence produces about 10 times more signal than the SE sequence in this TR range. Finally, the performance of the DE-SE sequence compared to the SE sequence was demonstrated on a biological sample. The presented DE-SE sequence has been shown to be effective for rapid imaging of samples with long T1 relaxation times in MR microscopy and can also be considered as a suitable method for rapid proton density weighed imaging of materials.

6.
ACS Nano ; 17(24): 25348-25356, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078697

RESUMO

The fully electrical control of the magnetic states in magnetic tunnel junctions is highly pursued for the development of the next generation of low-power and high-density information technology. However, achieving this functionality remains a formidable challenge at present. Here we propose an effective strategy by constructing a trilayer van der Waals multiferroic structure, consisting of CrI3-AgBiPSe6 and Cr2Ge2Te6-In2Se3, to achieve full-electrical control of multiferroic tunnel junctions. Within this structure, two different magnetic states of the magnetic bilayers (CrI3/Cr2Ge2Te6) can be modulated and switched in response to the polarization direction of the adjacent ferroelectric materials (AgBiPSe6/In2Se3). The intriguing magnetization reversal is mainly attributed to the polarization-field-induced band structure shift and interfacial charge transfer. On this basis, we further design two multiferroic tunnel junction devices, namely, graphene/CrI3-AgBiPSe6/graphene and graphene/Cr2Ge2Te6-In2Se3/graphene. In these devices, good interfacial Ohmic contacts are successfully obtained between the graphene electrode and the heterojunction, leading to an ultimate tunneling magnetoresistance of 9.3 × 106%. This study not only proposes a feasible strategy and identifies a promising candidate for achieving fully electrically controlled multiferroic tunnel junctions but also provides insights for designing other advanced spintronic devices.

7.
Adv Sci (Weinh) ; 10(36): e2302550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939279

RESUMO

Resonant absorption of a photon by bound electrons in a solid can promote an electron to another orbital state or transfer it to a neighboring atomic site. Such a transition in a magnetically ordered material could affect the magnetic order. While this process is an obvious road map for optical control of magnetization, experimental demonstration of such a process remains challenging. Exciting a significant fraction of magnetic ions requires a very intense incoming light beam, as orbital resonances are often weak compared to above-band-gap excitations. In the latter case, a sizeable reduction of the magnetization occurs as the absorbed energy increases the spin temperature, masking the non-thermal optical effects. Here, using ultrafast X-ray spectroscopy, this work is able to resolve changes in the magnetization state induced by resonant absorption of infrared photons in Co-doped yttrium iron garnet, with negligible thermal effects. This work finds that the optical excitation of the Co ions affects the two distinct magnetic Fe sublattices differently, resulting in a transient non-collinear magnetic state. The present results indicate that the all-optical magnetization switching (AOS) most likely occurs due to the creation of a transient, non-collinear magnetic state followed by coherent spin rotations of the Fe moments.

8.
J Phys Condens Matter ; 36(1)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703900

RESUMO

The magnetization reversal (MR) of the layered Ni4-xZnxNb2O9ferrimagnetic compounds, withx=0,0.25,0.50and 0.75, is studied in this work using Monte Carlo (MC) simulations and mean field (MF) calculations. First, we analyze the parent compound to set the parameters of our simulations; testing together MC simulations, MF calculations, and MR experiments reported by Bollettaet al(2022J. Appl. Phys.132153901). Then using two different approaches we fit the MR curves of the series of compounds finding a quite good agreement between MC simulations and the experiments. According to these results, Zn substitutions change the relative contribution to the magnetization of the different layers. Here we present two possible hypotheses to explain this effect; one involving a heterogeneous distribution of Zn2+among the layers, and the other related to distortions of the NiO6octahedra.

9.
Materials (Basel) ; 16(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37445103

RESUMO

High-performance Nd-Fe-B-based rare-earth permanent magnets play a crucial role in the application of traction motors equipped in new energy automobiles. In particular, the anisotropic hot-deformed (HD) Nd-Fe-B magnets prepared by the hot-press and hot-deformation process show great potential in achieving high coercivity due to their fine grain sizes of 200-400 nm, which are smaller by more than an order of magnitude compared to the traditional sintered Nd-Fe-B magnets. However, the current available coercivity of HD magnets is not as high as expected according to an empirical correlation between coercivity and grain size, only occupying about 25% of its full potential of the anisotropy field of the Nd2Fe14B phase. For the sake of achieving high-coercivity HD magnets, two major routes have been developed, namely the grain boundary diffusion process (GBDP) and the dual alloy diffusion process (DADP). In this review, the fundamentals and development of the HD Nd-Fe-B magnets are comprehensively summarized and discussed based on worldwide scientific research. The advances in the GBDP and DADP are investigated and summarized based on the latest progress and results. Additionally, the mechanisms of coercivity enhancement are discussed based on the numerous results of micromagnetic simulations to understand the structure-property relationships of the HD Nd-Fe-B magnets. Lastly, the magnetization reversal behaviors, based on the observation of magneto-optic Kerr effect microscopy, are analyzed to pinpoint the weak regions in the microstructure of the HD Nd-Fe-B magnets.

10.
Small ; 19(44): e2302884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37403297

RESUMO

Traditional current-driven spintronics is limited by localized heating issues and large energy consumption, restricting their data storage density and operation speed. Meanwhile, voltage-driven spintronics with much lower energy dissipation also suffers from charge-induced interfacial corrosion. Thereby finding a novel way of tuning ferromagnetism is crucial for spintronics with energy-saving and good reliability. Here, a visible light tuning of interfacial exchange interaction via photoelectron doping into synthetic antiferromagnetic heterostructure of CoFeB/Cu/CoFeB/PN Si substrate is demonstrated. Then, a complete, reversible magnetism switching between antiferromagnetic (AFM) and ferromagnetic (FM) states with visible light on and off is realized. Moreover, a visible light control of 180° deterministic magnetization switching with a tiny magnetic bias field is achieved. The magnetic optical Kerr effect results further reveal the magnetic domain switching pathway between AFM and FM domains. The first-principle calculations conclude that the photoelectrons fill in the unoccupied band and raise the Fermi energy, which increases the exchange interaction. Lastly, a prototype device with visible light control of two states switching with a 0.35% giant magnetoresistance ratio change (maximal 0.4%), paving the way toward fast, compact, and energy-efficient solar-driven memories is fabricated.

11.
J Phys Condens Matter ; 35(34)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37207667

RESUMO

We study the microwave-induced magnetization reversal in two systems, the microwave-driven nanomagnet (NM) and the NM coupled to a Josephson junction (JJ) under the microwave field (NM-JJ-MW). The frequency of the applied cosine chirp pulse changes nonlinearly with time to match the magnetization precession frequency. The coupling between the NM and JJ reduces the magnetization switching time as well as the optimal amplitude of the microwave field as a result of manipulating the magnetization via Josephson-to-magnetic energy ratioG. The reversal effect in NM-JJ-MW is sufficiently robust against changes in pulse amplitude and duration. In this system, the increase ofGdecreases the possibility of the non-reversing magnetic response as the Gilbert damping increases without further increase in the external microwave field. We also discuss the magnetic response of the NM driven by the ac field of two JJs in which the time-dependent frequency is controlled by the voltage across the junctions. Our results provide a controllable scheme of magnetization reversal that might help to realize fast memory devices.

12.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363239

RESUMO

Heavy rare-earth (HRE) elements are important for the preparation of high-coercivity permanent magnets. A further understanding of the thermodynamic properties of HRE phases, and the magnetization reversal mechanism of magnets are still critical issues to obtain magnets that can achieve better performance. In this work, the Nd−Dy−Fe−B multicomponent system is investigated via the calculation of the phase diagram (CALPHAD) method and micromagnetic simulation. The phase composition of magnets with various ratios of Nd and Dy is assessed using critically optimized thermodynamic data. γ-Fe and Nd2Fe17 phases are suppressed when partial Nd is substituted with Dy (<9.3%), which, in turn, renders the formation of Nd2Fe14B phase favorable. The influence of the magnetic properties of grain boundaries (GBs) on magnetization reversal is detected by the micromagnetic simulations with the 3D polyhedral grains model. Coercivity was enhanced with both 3 nm nonmagnetic and the hard-magnetic GBs for the pinning effect besides the GBs. Moreover, the nucleation and propagation of reversed domains in core-shell grains are investigated, which suggests that the magnetic structure of grains can also influence the magnetization reversal of magnets. This study provides a theoretical route for a high-efficiency application of the Dy element, realizing a deterministic enhancement of the coercivity in Nd−Fe−B-based magnets.

13.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234292

RESUMO

Various coercive force field components in Wiegand wire exhibit a significant magnetization reversal under an applied magnetic field. A fast magnetization reversal is accompanied by a large Barkhausen jump, which induces a pulse voltage in a pickup coil wound around the Wiegand wire which serves as a power source for the devices or sensors. This study aims to elucidate the magnetization reversal in the Wiegand wire by using a first-order reversal curve (FORC) diagram method. The magnetic structure of the Wiegand wire typically comprises three layers: a soft layer, middle layer, and hard layer. In this study, we analyze the coercive and interactive force fields between the adjacent layers. The results demonstrate a high coercivity of the center core and a lower coercivity of the outer layer of the wire.

14.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296897

RESUMO

In this study, the appearance of magnetic moments and ferromagnetism in nanostructures of non-magnetic materials based on silicon and transition metals (such as iron) was considered experimentally and theoretically. An analysis of the related literature shows that for a monolayer iron coating on a vicinal silicon surface with (111) orientation after solid-phase annealing at 450-550 °C, self-ordered two-dimensional islands of α-FeSi2 displaying superparamagnetic properties are formed. We studied the transition to ferromagnetic properties in a system of α-FeSi2 nanorods (NRs) in the temperature range of 2-300 K with an increase in the iron coverage to 5.22 monolayers. The structure of the NRs was verified along with distortions in their lattice parameters due to heteroepitaxial growth. The formation of single-domain grains in α-FeSi2 NRs with a cross-section of 6.6 × 30 nm2 was confirmed by low-temperature and field studies and FORC (first-order magnetization reversal curves) diagrams. A mechanism for maintaining ferromagnetic properties is proposed. Ab initio calculations in freestanding α-FeSi2 nanowires revealed the formation of magnetic moments for some surface Fe atoms only at specific facets. The difference in the averaged magnetic moments between theory and experiments can confirm the presence of possible contributions from defects on the surface of the NRs and in the bulk of the α-FeSi2 NR crystal lattice. The formed α-FeSi2 NRs with ferromagnetic properties up to 300 K are crucial for spintronic device development within planar silicon technology.

15.
Materials (Basel) ; 15(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36079321

RESUMO

Wiegand wires exhibit a unique fast magnetization reversal feature in the soft layer that is accompanied by a large Barkhausen jump, which is also known as the Wiegand effect. However, the magnetic structure and interaction in Wiegand wires cannot be evaluated by conventional magnetization hysteresis curves. We analyzed the magnetic properties of Wiegand wires at various lengths by measuring the first-order reversal curves (FORCs) and by evaluating the FORC diagram from a series of FORCs. In particular, we used a FeCoV Wiegand wire with a magnetic soft outer layer, an intermediate layer, and a hard core. The magnetization of the various layers in the wire could be identified from the FORC diagrams. Furthermore, based on the interaction between multiple layers, the positive and negative polarity of the FORC distribution was clarified.

16.
J Phys Condens Matter ; 34(38)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35797955

RESUMO

We have studied the effect of deposition pressure on the magnetization reversal, domains, anisotropy and Gilbert damping constant in the ferromagnetic (CoFeB and Co) single and bilayer samples. Hysteresis measured by magneto-optic Kerr microscopy for the single layer films prepared at higher deposition pressure indicate no change of loop shape i.e. isotropic behaviour. An enhancement of anisotropy has been observed in the bilayer samples than the single layer samples prepared at a particular deposition condition. However, increasing the deposition pressure to 50 sccm for the bilayer samples, anisotropy gets reduced. For single layer Co film deposited at 10 sccm exhibits branch and patch like domains for different angle between the easy axis and the external magnetic field. However, the Co film deposited at 50 sccm exhibits ripple like domains. In the case of single layer CoFeB, branch and patch like domains are observed deposited at 10 sccm. Patch like domains are found for the CoFeB films deposited at 50 sccm. Pinned labyrinth and ripple kind of magnetic domains along with the big branch domains are found in the bilayer samples. The pinned domains may be due to the interfacial exchange coupling. Similar values of damping constants have been observed for different thin films prepared at different deposition pressure.

17.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745306

RESUMO

Cylindrical magnetic nanowires are promising materials that have the potential to be used in a wide range of applications. The versatility of these nanostructures is based on the tunability of their magnetic properties, which is achieved by appropriately selecting their composition and morphology. In addition, stochastic behavior has attracted attention in the development of neuromorphic devices relying on probabilistic magnetization switching. Here, we present a study of the magnetization reversal process in multisegmented CoNi/Cu nanowires. Nonstandard 2D magnetic maps, recorded under an in-plane magnetic field, produce datasets that correlate with magnetoresistance measurements and micromagnetic simulations. From this process, the contribution of the individual segments to the demagnetization process can be distinguished. The results show that the magnetization reversal in these nanowires does not occur through a single Barkhausen jump, but rather by multistep switching, as individual CoNi segments in the NW undergo a magnetization reversal. The existence of vortex states is confirmed by their footprint in the magnetoresistance and 2D MFM maps. In addition, the stochasticity of the magnetization reversal is analysed. On the one hand, we observe different switching fields among the segments due to a slight variation in geometrical parameters or magnetic anisotropy. On the other hand, the stochasticity is observed in a series of repetitions of the magnetization reversal processes for the same NW under the same conditions.

18.
Nanotechnology ; 33(36)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623331

RESUMO

From fast magnetic memories with low-power consumption to recording media with high densities, realizing the magnetization reversal and interaction of magnetic layers would allow for manipulating the ultimate properties. Here, we use a pulsed electrochemical deposition technique in porous alumina templates (50 nm in pore diameter) to fabricate arrays of nanowires, consisting of FeNi layers (26-227 nm in thickness) with disk to rod-shaped morphologies separated by ultra-thin (3 nm) Cu layers. By acquiring hysteresis curves and first-order reversal curves (FORCs) of the multilayer nanowire arrays, we comprehensively investigate magnetization reversal properties and magnetostatic interactions of the layers at different field angles (0° ≤θ≤ 90°). These involve the extraction of several parameters, including hysteresis curve coercivity (HcHyst), FORC coercivity (HcFORC), interaction field distribution width (ΔHu), and irreversible fraction of magnetization (IFm) as a function ofθ. We find relatively constant and continuously decreasing trends ofHcHystwhen 0° ≤θ≤ 45°, and 45° < Î¸≤ 90°, respectively. Meanwhile, angular dependence ofHcFORCandIFmshows continuously increasing and decreasing trends, irrespective of the FeNi layer morphology. Our FORC results indicate the magnetization reversal properties of the FeNi/Cu nanowires are accompanied with vortex domain wall and single vortex modes, especially at high field angles. The rod-shaped layers also induce maximum ΔHuduring the reversal process, owing to enhancements in both magnetizing and demagnetizing-type magnetostatic interactions.

19.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407296

RESUMO

Magnetization reversal processes in the NiFe/FeMn exchange biased structures with various antiferromagnetic layer thicknesses (0-50 nm) and glass substrate temperatures (17-600 °C) during deposition were investigated in detail. Magnetic measurements were performed in the temperature range from 80 K up to 300 K. Hysteresis loop asymmetry was found at temperatures lower than 150 K for the samples with an antiferromagnetic layer thickness of more than 10 nm. The average grain size of FeMn was found to increase with the AFM layer increase, and to decrease with the substrate temperature increase. Hysteresis loop asymmetry was explained in terms of the exchange spring model in the antiferromagnetic layer.

20.
Beilstein J Nanotechnol ; 13: 334-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425691

RESUMO

We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of the film. In a wide range of the appled field directions, the magnetization reversal proceeds in two steps via the intermediate easy axis. An epitaxial heterostructure of two magnetically separated ferromagnetic layers, Pd0.92Fe0.08/Ag/Pd0.96Fe0.04, was synthesized and studied with dc magnetometry. Its magnetic configuration diagram has been constructed and the conditions have been determined for a controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA