Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Sensors (Basel) ; 24(20)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39460137

RESUMO

Measurements monitoring the inductive coupling between oscillating radio-frequency magnetic fields and objects of interest create versatile platforms for non-destructive testing. The benefits of ultra-low-frequency measurements, i.e., below 3 kHz, are sometimes outweighed by the fundamental and technical difficulties related to operating pick-up coils or other field sensors in this frequency range. Inductive measurements with the detection based on a two-photon interaction in rf atomic magnetometers address some of these issues as the sensor gains an uplift in its operational frequency. The developments reported here integrate the fundamental and applied aspects of the two-photon process in magnetic induction measurements. In this paper, all the spectral components of the two-photon process are identified, which result from the non-linear interactions between the rf fields and atoms. For the first time, a method for the retrieval of the two-photon phase information, which is critical for inductive measurements, is also demonstrated. Furthermore, a self-compensation configuration is introduced, whereby high-contrast measurements of defects can be obtained due to its insensitivity to the primary field, including using simplified instrumentation for this configuration by producing two rf fields with a single rf coil.

2.
Front Med Technol ; 6: 1470970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39445170

RESUMO

Non-invasive imaging of the human spinal cord is a vital tool for understanding the mechanisms underlying its functions in both healthy and pathological conditions. However, non-invasive imaging presents a significant methodological challenge because the spinal cord is difficult to access with conventional neurophysiological approaches, due to its proximity to other organs and muscles, as well as the physiological movements caused by respiration, heartbeats, and cerebrospinal fluid (CSF) flow. Here, we discuss the present state and future directions of spinal cord imaging, with a focus on the estimation of current flow through magnetic field measurements. We discuss existing cryogenic (superconducting) and non-cryogenic (optically-pumped magnetometer-based, OPM) systems, and highlight their strengths and limitations for studying human spinal cord function. While significant challenges remain, particularly in source imaging and interference rejection, magnetic field-based neuroimaging offers a novel avenue for advancing research in various areas. These include sensorimotor processing, cortico-spinal interplay, brain and spinal cord plasticity during learning and recovery from injury, and pain perception. Additionally, this technology holds promise for diagnosing and optimizing the treatment of spinal cord disorders.

3.
Environ Sci Technol ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39344066

RESUMO

In the United States, hundreds of thousands of undocumented orphan wells have been abandoned, leaving the burden of managing environmental hazards to governmental agencies or the public. These wells, a result of over a century of fossil fuel extraction without adequate regulation, lack basic information like location and depth, emit greenhouse gases, and leak toxic substances into groundwater. For most of these wells, basic information such as well location and depth is unknown or unverified. Addressing this issue necessitates innovative and interdisciplinary approaches for locating, characterizing, and mitigating their environmental impacts. Our survey of the United States revealed the need for tools to identify well locations and assess conditions, prompting the development of technologies including machine learning to automatically extract information from old records (95%+ accuracy), remote sensing technologies like aero-magnetometers to find buried wells, and cost-effective methods for estimating methane emissions. Notably, fixed-wing drones equipped with magnetometers have emerged as cost-effective and efficient for discovering unknown wells, offering advantages over helicopters and quadcopters. Efforts also involved leveraging local knowledge through outreach to state and tribal governments as well as citizen science initiatives. These initiatives aim to significantly contribute to environmental sustainability by reducing greenhouse gases and improving air and water quality.

4.
Neuroimage ; 300: 120864, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39322096

RESUMO

The current magnetoencephalography (MEG) systems, which rely on cables for control and signal transmission, do not fully realize the potential of wearable optically pumped magnetometers (OPM). This study presents a significant advancement in wireless OPM-MEG by reducing magnetization in the electronics and developing a tailored wireless communication protocol. Our protocol effectively eliminates electromagnetic interference, particularly in the critical frequency bands of MEG signals, and accurately synchronizes the acquisition and stimulation channels with the host computer's clock. We have successfully achieved single-channel wireless OPM-MEG measurement and demonstrated its reliability by replicating three well-established experiments: The alpha rhythm, auditory evoked field, and steady-state visual evoked field in the human brain. Our prototype wireless OPM-MEG system not only streamlines the measurement process but also represents a major step forward in the development of wearable OPM-MEG applications in both neuroscience and clinical research.


Assuntos
Magnetoencefalografia , Tecnologia sem Fio , Magnetoencefalografia/instrumentação , Magnetoencefalografia/métodos , Humanos , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Magnetometria/instrumentação , Magnetometria/métodos , Encéfalo/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Masculino , Ritmo alfa/fisiologia
5.
Ecol Evol ; 14(9): e70264, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39318532

RESUMO

Biologging has proven to be a powerful approach to investigate diverse questions related to movement ecology across a range of spatiotemporal scales and increasingly relies on multidisciplinary expertise. However, the variety of animal-borne equipment, coupled with little consensus regarding analytical approaches to interpret large, complex data sets presents challenges and makes comparison between studies and study species difficult. Here, we present a combined hardware and analytical approach for standardizing the collection, analysis, and interpretation of multisensor biologging data. Here, we present (i) a custom-designed integrated multisensor collar (IMSC), which was field tested on 71 free-ranging wild boar (Sus scrofa) over 2 years; (ii) a machine learning behavioral classifier capable of identifying six behaviors in free-roaming boar, validated across individuals equipped with differing collar designs; and (iii) laboratory and field-based calibration and accuracy assessments of animal magnetic heading measurements derived from raw magnetometer data. The IMSC capacity and durability exceeded expectations, with a 94% collar recovery rate and a 75% cumulative data recording success rate, with a maximum logging duration of 421 days. The behavioral classifier had an overall accuracy of 85% in identifying the six behavioral classes when tested on multiple collar designs and improved to 90% when tested on data exclusively from the IMSC. Both laboratory and field tests of magnetic compass headings were in precise agreement with expectations, with overall median magnetic headings deviating from ground truth observations by 1.7° and 0°, respectively. Although multisensor equipment and sophisticated analyses are now commonplace in biologging studies, the IMSC hardware and analytical framework presented here provide a valuable tool for biologging researchers and will facilitate standardization of biologging data across studies. In addition, we highlight the potential of additional analyses available using this framework that can be adapted for use in future studies on terrestrial mammals.

6.
HardwareX ; 20: e00580, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39314535

RESUMO

As part of Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project, a low-cost, commercial off-the-shelf magnetometer has been developed to provide quantitative and qualitative measurements of the geospace environment from the ground for both scientific and operational purposes at a cost that will allow for crowd-sourced data contributions. The PSWS magnetometers employ a magneto-inductive sensor technology to record three-axis magnetic field variations with a field resolution of ∼ 3 nT at a 1 Hz sample rate. The measurement range of the sensor is ± 1 . 1 × 1 0 6 nT) and is valid over a temperature range of -40 °C to +85 °C. Data from the PSWS network will combine these magnetometer measurements with high frequency (HF, 3-30 MHz) radio observations to monitor large-scale current systems and ionospheric disturbances due to drivers from both space and the atmosphere. A densely-spaced magnetometer array, once established, will demonstrate their space weather monitoring capability to an unprecedented spatial extent. Magnetic field data obtained by the magnetometers installed at various locations in the US are presented and compared with the existing magnetometers nearby, demonstrating that the performance is very adequate for scientific investigations.

7.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275603

RESUMO

The spin-exchange-pumped nuclear magnetic resonance gyroscope (NMRG) is a pivotal tool in quantum navigation. The transverse relaxation of atoms critically impacts the NMRG's performance parameters and is essential for judging normal operation. Conventional methods for measuring transverse relaxation typically use dual beams, which involves complex optical path and frequency stabilization systems, thereby complicating miniaturization and integration. This paper proposes a method to construct a 133Cs parametric resonance magnetometer using a single-beam vertical-cavity surface-emitting laser (VCSEL) to measure the transverse relaxation of 129Xe and 131Xe. Based on this method, the volume of the gyroscope probe is significantly reduced to 50 cm3. Experimental results demonstrate that the constructed Cs-Xe NMRG can achieve a transverse relaxation time (T2) of 8.1 s under static conditions. Within the cell temperature range of 70 °C to 110 °C, T2 decreases with increasing temperature, while the signal amplitude inversely increases. The research lays the foundation for continuous measurement operations of miniaturized NMRGs.

8.
Sci Rep ; 14(1): 17912, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095609

RESUMO

The navigational accuracy of sea animals and trans-ocean birds provides inspiration in using geo-magnetic field (GMF) for realizing strategic truly autonomous underwater vehicles (AUV) capable of determining their absolute position on earth, without the aid of ship-referenced acoustic baseline systems. Supervised Machine Learning algorithms are applied on the GMF intensity data obtained from NOAA World Magnetic Model for a 900 km2 within the Indian mineral exploratory area in the Central Indian Ocean, with a resolution of 50 m, considering the sensitivity of commercially available magnetometers. It is identified that, for AUVs equipped with magnetometers with a detection sensitivity of 0.1 nT, the supervisory random forest regression and decision tree algorithm trained with priori GMF data, could provide trajectory guidance to AUVs with an absolute mean position accuracy in 2D plane, with reference to the last known position from Integrated Navigation system aided initially with GPS and with acoustic positioning in underwater. Circular Error Probable (CEP 50) of 53 m and 56 m, respectively. The scalar GMF anomaly navigation demonstrated to be a viable GPS-alternative navigation system could be extended to larger areas with inclination and declination vectors, as unique identifiers.

9.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000862

RESUMO

Magnetic anomaly detection (MAD) technology based on the magnetic gradient tensor (MGT) has broad application prospects in fields such as unexploded ordnance detection and mineral exploration. The difference approximation method currently employed in the MGT measurement system introduces measurement errors. Designing reasonable geometric structures and configuring optimal structural parameters can effectively reduce measurement errors. Based on research into differential MGT measurement, this paper proposes three simplified planar MGT measurement structures and provides the differential measurement matrix. The factors that affect the design of the baseline distance of the MGT measurement system are also theoretically analyzed. Then, using the magnetic dipole model, the error analysis of the MGT measurement structures is carried out. The results demonstrate that the planar cross-shaped structure is optimal, with the smallest measurement error, only 3.15 × 10-10 T/m. Furthermore, employing the control variable method, the impact of sensor resolution constraints, noise level, target magnetic moment, and detection distance on the design of the optimal baseline distance of the MGT measurement system is simulated and verified. The results indicate that the smaller the target magnetic moment, the farther the detection distance, the lower the magnetometer resolution, the greater the noise, and the greater the baseline distance required. These conclusions provide reference and guidance for the construction of the MGT measurement system based on triaxial magnetometers.

10.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001163

RESUMO

The magnetic field range in which a magnetic sensor operates is an important consideration for many applications. Elliptical planar Hall effect (EPHE) sensors exhibit outstanding equivalent magnetic noise (EMN) on the order of pT/Hz, which makes them promising for many applications. Unfortunately, the current field range in which EPHE sensors with pT/Hz EMN can operate is sub-mT, which limits their potential use. Here, we fabricate EPHE sensors with an increased field range and measure their EMN. The larger field range is obtained by increasing the uniaxial shape-induced anisotropy parallel to the long axis of the ellipse. We present measurements of EPHE sensors with magnetic anisotropy which ranges between 12 Oe and 120 Oe and show that their EMN at 10 Hz changes from 800 pT/Hz to 56 nT/Hz. Furthermore, we show that the EPHE sensors behave effectively as single magnetic domains with negligible hysteresis. We discuss the potential use of EPHE sensors with extended field range and compare them with sensors that are widely used in such applications.

11.
Data Brief ; 55: 110621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39006348

RESUMO

Timed Up and Go (TUG) test is one of the most popular clinical tools aimed at the assessment of functional mobility and fall risk in older adults. The automation of the analysis of TUG movements is of great medical interest not only to speed up the test but also to maximize the information inferred from the subjects under study. In this context, this article describes a dataset collected from a cohort of 69 experimental subjects (including 30 adults over 60 years), during the execution of several repetitions of the TUG test. In particular, the dataset includes the measurements gathered with four wearables devices embedding four sensors (accelerometer, gyroscope magnetometer and barometer) located on four body locations (waist, wrist, ankle and chest). As a particularity, the dataset also includes the same measurements recorded when the young subjects repeat the test while wearing a commercial geriatric simulator, consisting of a set of weighted vests and other elements intended to replicate the limitations caused by aging. Thus, the generated dataset also enables the investigation into the potential of such tools to emulate the actual dynamics of older individuals.

12.
Data Brief ; 55: 110731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39081492

RESUMO

Given the popularity of wrist-worn devices, particularly smartwatches, the identification of manual movement patterns has become of utmost interest within the research field of Human Activity Recognition (HAR) systems. In this context, by leveraging the numerous sensors natively embedded in smartwatches, the HAR functionalities that can be implemented in a watch via software and in a very cost-efficient way cover a wide variety of applications, ranging from fitness trackers to gesture detectors aimed at disabled individuals (e.g., for sending alarms), promoting behavioral activation or healthy lifestyle habits. In this regard, for the development of artificial intelligence algorithms capable of effectively discriminating these activities, it is of great importance to have repositories of movements that allow the scientific community to train, evaluate, and benchmark new proposals of movement detectors. The UMAHand dataset offers a collection of files containing the signals captured by a Shimmer 3 sensor node, which includes an accelerometer, a gyroscope, a magnetometer and a barometer, during the execution of different typical hand movements. For that purpose, the measurements from these four sensors, gathered at a sampling rate of 100 Hz, were taken from a group of 25 volunteers (16 females and 9 males), aged between 18 and 56, during the performance of 29 daily life activities involving hand mobility. Participants wore the sensor node on their dominant hand throughout the experiments.

13.
Nano Lett ; 24(30): 9163-9168, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037721

RESUMO

Magneto-optical (MO) polymer nanocomposites have emerged as alternatives to conventional MO crystals, particularly in nanophotonics applications, thanks to their better processing flexibility and superior Verdet constants. However, a higher Verdet constant commonly comes with excessive optical loss due to increased absorption and scattering, resulting in a constant or reduced figure-of-merit (FOM) defined as the Verdet constant over optical loss. By doping magnetite (Fe3O4) nanoparticles with Tb3+ ions, we report a new strategy to enhance the Verdet constant without increasing the optical loss. The Fe3O4:Tb3+ nanocomposite is one of a kind that simultaneously achieves a state-of-the-art Verdet constant of 5.6 × 105 °/T·m and a state-of-the-art FOM of 31°/T in the near-infrared region.

14.
Physiol Meas ; 45(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39029494

RESUMO

Objective. The measurement of electromyography (EMG) signals with needle electrodes is widely used in clinical settings for diagnosing neuromuscular diseases. Patients experience pain during needle EMG testing. It is significant to develop alternative diagnostic modalities.Approach. This paper proposes a portable magnetomyography (MMG) measurement system for neuromuscular disease auxiliary diagnosis. Firstly, the design and operating principle of the system are introduced. The feasibility of using the system for auxiliary diagnosis of neuromuscular diseases is then studied. The magnetic signals and needle EMG signals of thirty subjects were collected and compared.Main results. It is found that the amplitude of muscle magnetic field signal increases during mild muscle contraction, and the signal magnitudes of the patients are smaller than those of normal subjects. The diseased muscles tested in the experiment can be distinguished from the normal muscles based on the signal amplitude, using a threshold value of 6 pT. The MMG diagnosis results align well with the needle EMG diagnosis. In addition, the MMG measurement indicates that there is a persistence of spontaneous activity in the diseased muscle.Significance.The experimental results demonstrate that it is feasible to auxiliary diagnose neuromuscular diseases using the portable MMG system, which offers the advantages of non-contact and painless measurements. After more in-depth, systematic, and quantitative research, the portable MMG could potentially be used for auxiliary diagnosis of neuromuscular diseases. The clinical trial registration number is ChiCTR2200067116.


Assuntos
Eletromiografia , Doenças Neuromusculares , Humanos , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/fisiopatologia , Masculino , Adulto , Eletromiografia/instrumentação , Feminino , Processamento de Sinais Assistido por Computador , Miografia/instrumentação , Miografia/métodos , Adulto Jovem , Estudos de Viabilidade
15.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894267

RESUMO

When magnetic matching aided navigation is applied to an underwater vehicle, the magnetometer must be installed inside the vehicle, considering the navigation safety and concealment of the underwater vehicle. Then, the interference magnetic field will seriously affect the accuracy of geomagnetic field measurement, which directly affects the accuracy of geomagnetic matching aided navigation. Therefore, improving the accuracy of geomagnetic measurements inside the vehicle through error compensation has become one of the most difficult problems that requires an urgent solution in geomagnetic matching aided navigation. In order to solve this problem, this paper establishes the calculation model of the internal magnetic field of the underwater vehicle and the geomagnetic measurement error model of the ship-borne magnetometer. Then, a compensation method for the geomagnetic measurement error of the ship-borne magnetometer, based on the constrained total least square method, is proposed. To verify the effectiveness of the method proposed in this paper, a simulation experiment of geomagnetic measurement and compensation of a ship-borne three-axis magnetometer was constructed. Among them, to be closer to the real situation, a combination of the geomagnetism model, the elliptic shell model and the magnetic dipole model was used to simulate the internal magnetic field of the underwater vehicle. The experimental results indicated that the root mean square error of geomagnetic measurement in an underwater vehicle was less than 5 nT after compensation, and the accuracy of geomagnetic measurement met the requirements of geomagnetic matching aided navigation.

16.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931779

RESUMO

A superconducting quantum magnetometer for high-sensitivity applications has been developed by exploiting the flux focusing of the superconducting loop. Unlike conventional dc SQUID magnetometers that use a superconducting flux transformer or a multiloop design, in this case, a very simple design has been employed. It consists of a bare dc SQUID with a large washer-shaped superconducting ring in order to guarantee a magnetic field sensitivity BΦ less than one nT/Φ0. The degradation of the characteristics of the device due to an inevitable high value of the inductance parameter ßL was successfully compensated by damping the inductance of the dc SQUID. The size of the magnetometer, coinciding with that of the washer, is 5 × 5 mm2 and the spectral density of the magnetic field noise is 8 fT/√Hz with a low frequency noise knee of two Hz. The excellent performance of this simple magnetometer makes it usable for all high-sensitivity applications including magnetoencephalography.

17.
Heliyon ; 10(11): e31740, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845884

RESUMO

Optically pumped magnetometers (OPMs) have become a favorable tool for magnetoencephalography (MEG) measurement, offering a non-invasive method of measurement. OPMs do not require cryogenic environments, sensors can be more closely aligned with the brain. We employed a passive single-stimulus paradigm in conjunction with OPMs with a sensitivity of 20 fT/ Hz to investigate the auditory response of rats to inter-stimulus interval (ISI) and frequencies, recording the rat auditory event-related magnetic fields (ERMFs). Our findings include: (1) Auditory evoked fields can be detected non-invasively by OPMs; (2) The amplitude of the rat auditory ERMFs varies with changes in ISI, with more pronounced amplitude changes observed after 5 s; (3) When the sound stimulus frequency is altered at the same ISI, the amplitude of the rats ERMFs changes with frequency, indicating significant differences in attention. Our method offers a valuable tool for the clinical application of a single stimulus paradigm and opens up a new avenue for research on the brain magnetic field detections.

18.
Elife ; 132024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831699

RESUMO

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.


Assuntos
Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/instrumentação , Criança , Adolescente , Adulto , Adulto Jovem , Masculino , Feminino , Pré-Escolar , Ritmo beta/fisiologia , Encéfalo/fisiologia
19.
J Neural Eng ; 21(3)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812288

RESUMO

Objective. Magnetoencephalography (MEG) shares a comparable time resolution with electroencephalography. However, MEG excels in spatial resolution, enabling it to capture even the subtlest and weakest brain signals for brain-computer interfaces (BCIs). Leveraging MEG's capabilities, specifically with optically pumped magnetometers (OPM-MEG), proves to be a promising avenue for advancing MEG-BCIs, owing to its exceptional sensitivity and portability. This study harnesses the power of high-frequency steady-state visual evoked fields (SSVEFs) to build an MEG-BCI system that is flickering-imperceptible, user-friendly, and highly accurate.Approach.We have constructed a nine-command BCI that operates on high-frequency SSVEF (58-62 Hz with a 0.5 Hz interval) stimulation. We achieved this by placing the light source inside and outside the magnetic shielding room, ensuring compliance with non-magnetic and visual stimulus presentation requirements. Five participants took part in offline experiments, during which we collected six-channel multi-dimensional MEG signals along both the vertical (Z-axis) and tangential (Y-axis) components. Our approach leveraged the ensemble task-related component analysis algorithm for SSVEF identification and system performance evaluation.Main Results.The offline average accuracy of our proposed system reached an impressive 92.98% when considering multi-dimensional conjoint analysis using data from both theZandYaxes. Our method achieved a theoretical average information transfer rate (ITR) of 58.36 bits min-1with a data length of 0.7 s, and the highest individual ITR reached an impressive 63.75 bits min-1.Significance.This study marks the first exploration of high-frequency SSVEF-BCI based on OPM-MEG. These results underscore the potential and feasibility of MEG in detecting subtle brain signals, offering both theoretical insights and practical value in advancing the development and application of MEG in BCI systems.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Magnetoencefalografia , Estimulação Luminosa , Humanos , Magnetoencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Adulto , Masculino , Feminino , Estimulação Luminosa/métodos , Adulto Jovem , Córtex Visual/fisiologia
20.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812381

RESUMO

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Assuntos
Córtex Auditivo , Eletroencefalografia , Potenciais Evocados Auditivos , Magnetoencefalografia , Humanos , Magnetoencefalografia/instrumentação , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Adulto , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA