Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.707
Filtrar
1.
Alzheimers Dement ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171353

RESUMO

INTRODUCTION: Reduced brain energy metabolism, mammalian target of rapamycin (mTOR) dysregulation, and extracellular amyloid beta (Aß) oligomer (xcAßO) buildup are some well-known Alzheimer's disease (AD) features; how they promote neurodegeneration is poorly understood. We previously reported that xcAßOs inhibit nutrient-induced mitochondrial activity (NiMA) in cultured neurons. We now report NiMA disruption in vivo. METHODS: Brain energy metabolism and oxygen consumption were recorded in heterozygous amyloid precursor protein knock-in (APPSAA) mice using two-photon fluorescence lifetime imaging and multiparametric photoacoustic microscopy. RESULTS: NiMA is inhibited in APPSAA mice before other defects are detected in these Aß-producing animals that do not overexpress APP or contain foreign DNA inserts into genomic DNA. Glycogen synthase kinase 3 (GSK3ß) signals through mTORC1 to regulate NiMA independently of mitochondrial biogenesis. Inhibition of GSK3ß with TWS119 stimulates NiMA in cultured human neurons, and mitochondrial activity and oxygen consumption in APPSAA mice. DISCUSSION: NiMA disruption in vivo occurs before plaques, neuroinflammation, and cognitive decline in APPSAA mice, and may represent an early stage in human AD. HIGHLIGHTS: Amyloid beta blocks communication between lysosomes and mitochondria in vivo. Nutrient-induced mitochondrial activity (NiMA) is disrupted long before the appearance of Alzheimer's disease (AD) histopathology in heterozygous amyloid precursor protein knock-in (APPSAA/+) mice. NiMA is disrupted long before learning and memory deficits in APPSAA/+ mice. Pharmacological interventions can rescue AD-related NiMA disruption in vivo.

2.
J Investig Med ; : 10815589241270489, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39091053

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent form of primary liver cancer with a 5-year survival rate of just 18%. Ferulic acid, a natural compound found in fruits and vegetables such as sweet corn, rice bran, and dong quai, is an encouraging drug known for its diverse positive effects on the body, including anti-inflammatory, anti-apoptotic, and neuroprotective properties. Our study aimed to investigate the potential antitumor effects of ferulic acid to inhibit tumor growth and inflammation of HCC in rats. HCC was induced in rats by administering thioacetamide. Additionally, some rats were given 50 mg/kg of ferulic acid three times a week for 16 weeks. Liver function was assessed by measuring serum alpha-fetoprotein (AFP) and examining hepatic tissue sections stained with hematoxylin/eosin or anti-hypoxia induced factor-1α (HIF-1α). The hepatic mRNA and protein levels of HIF-1α, nuclear factor κB (NFκB), tumor necrosis factor-α (TNF-α), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), cMyc, and cyclin D1 were examined. The results showed that ferulic acid increased the rats' survival rate by reducing serum AFP levels and suppressing hepatic nodules. Furthermore, ferulic acid ameliorated the appearance of vacuolated cytoplasm induced by HCC, reduced apoptotic nuclei, and necrotic nodules. Finally, ferulic acid decreased the expression of HIF-1α, NFκB, TNF-α, mTOR, STAT3, cMyc, and cyclin D1. In conclusion, ferulic acid is believed to possess antitumor properties by inhibiting HCC-induced hypoxia through the suppression of HIF-1α expression. Additionally, it helps in reducing the expression of mTOR, STAT3, cMyc, and cyclin D1, thereby slowing down tumor growth. Lastly, ferulic acid reduced hepatic tissue inflammation by downregulating NFκB and TNF-α.

3.
Int J Mol Med ; 54(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39092569

RESUMO

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Assuntos
Proliferação de Células , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Feminino , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Linhagem Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transição Epitelial-Mesenquimal/genética , Apoptose/genética , Movimento Celular/genética , Prognóstico
4.
J Clin Med ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124572

RESUMO

Background: The use of mammalian target of rapamycin inhibitors (mTORis) in kidney transplantation increases the risk of donor-specific human leukocyte antigen (HLA) antibody formation and rejection. Here, we investigated the long-term consequences of early mTORi treatment compared to calcineurin inhibitor (CNI) treatment. Methods: In this retrospective single-center analysis, key outcome parameters were compared between patients participating in randomized controlled immunosuppression trials between 1998 and 2011, with complete follow-up until 2018. The outcomes of eligible patients on a CNI-based regimen (n = 384) were compared with those of patients randomized to a CNI-free mTORi-based regimen (n = 81) and 76 patients randomized to a combination of CNI and mTORi treatments. All data were analyzed according to the intention-to-treat (ITT) principle. Results: Deviation from randomized immunosuppression for clinical reasons occurred significantly more often and much earlier in both mTORi-containing regimens than in the CNI treatment. Overall patient survival, graft survival, and death-censored graft survival did not differ between the treatment groups. Donor-specific HLA antibody formation and BPARs were significantly more common in both mTORi regimens than in the CNI-based immunosuppression. Conclusions: The tolerability and efficacy of the mTORi treatment in kidney graft recipients are inferior to those of CNI-based immunosuppression, while the long-term patient and graft survival rates were similar.

5.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125671

RESUMO

Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the ß catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Humanos , Masculino , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Invasividade Neoplásica , Técnicas de Silenciamento de Genes , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico
6.
Cureus ; 16(7): e65132, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040610

RESUMO

Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC) occurs in 5-20% of TSC patients, with a subset developing hydrocephalus. We present a case of a 14-year-old male diagnosed with TSC in the neonatal period who developed SEGA and subsequent hydrocephalus. Despite reducing the tumor size with the mammalian target of rapamycin (mTOR) inhibitors, ventricular enlargement persisted, indicating that obstructive hydrocephalus due to the foramen of Monro blockage was not the sole mechanism. Elevated cerebrospinal fluid (CSF) protein levels suggested additional factors like impaired CSF outflow. This case underscores the need for comprehensive treatment strategies and further research to better understand and manage hydrocephalus in TSC patients with SEGA.

7.
World J Gastrointest Oncol ; 16(7): 2894-2901, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072156

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a prosurvival mechanism for the clearance of damaged cellular components, specifically related to exposure to various stressors such as starvation, excessive ethanol intake, and chemotherapy. This editorial reviews and comments on an article by Zhao et al, to be published in World J Gastrointestinal Oncology in 2024. Based on various molecular biology methodologies, they found that human ß-defensin-1 reduced the proliferation of colon cancer cells, which was associated with the inhibition of the mammalian target of rapamycin, resulting in autophagy activation. The activation of autophagy is evidenced by increased levels of Beclin1 and LC3II/I proteins and mediated by the upregulation of long non-coding RNA TCONS_00014506. Our study discusses the impact of autophagy activation and mechanisms of autophagy, including autophagic flux, on cancer cells. Additionally, we emphasize the importance of describing the detailed methods for isolating long noncoding RNAs TCONS_00014506. Our review will benefit the scientific community and improve the overall clarity of the paper.

8.
J Med Life ; 17(3): 261-272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39044934

RESUMO

Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.


Assuntos
Senilidade Prematura , Jejum Intermitente , Obesidade , Animais , Humanos , Envelhecimento , Senilidade Prematura/prevenção & controle , Senescência Celular , Obesidade/prevenção & controle , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-38973300

RESUMO

This study aimed to report our experience with the use of sirolimus in pediatric liver transplant patients with chronic rejection or steroid-resistant rejection with hepatic fibrosis, focusing on their histological evolution. All pediatric liver transplant recipients who received off-label treatment with sirolimus for chronic ductopenic rejection or cortico-resistant rejection between July 2003 and July 2022 were included in the study. All nine patients included in the study showed improvement in liver enzymes and cholestasis parameters as soon as 1-month after postsirolimus introduction. A decrease in fibrosis stage was observed in 7/9 (77.7%) patients at 36 months. All but one patient experienced an improvement in the Rejection Activity Index and ductopenia at 12 months. A single patient had to discontinue sirolimus treatment owing to nephrotic proteinuria. In conclusion, sirolimus may be a safe and effective treatment for chronic and steroid-resistant rejection and may improve allograft rejection-related fibrosis and ductal damage.

10.
Cell Oncol (Dordr) ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888847

RESUMO

PURPOSE: This study investigates the role and effectiveness of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in oral cancer, focusing on the clinical relevance of EGFR and myeloid cell leukemia-1 (Mcl-1) in head and neck cancers (HNCs). It aims to explore the molecular mechanism of afatinib, a TKI, in treating human oral cancer. METHODS: We conducted an in silico analysis using databases like The Cancer Genome Atlas, Gene Expression Omnibus, and Clinical Proteomic Tumor Analysis Consortium, along with immunohistochemistry staining, to study EGFR and Mcl-1 expression in HNCs. For investigating afatinib's anticancer properties, we performed various in vitro and in vivo analyses, including trypan blue exclusion assay, Western blotting, 4'-6-diamidino-2-phenylindole staining, flow cytometry, quantitative real-time PCR, Mitochondrial membrane potential assay, overexpression vector construction, transient transfection, and a tumor xenograft model. RESULTS: Higher expression levels of EGFR and Mcl-1 were observed in HNC patient tissues compared to normal tissues, with their co-expression significantly linked to poor prognosis. There was a strong correlation between EGFR and Mcl-1 expressions in oral cancer patients. Afatinib treatment induced apoptosis and suppressed Mcl-1 in oral cancer cell lines without the EGFR T790M mutation. The mechanism of afatinib-induced apoptosis involved the EGFR/mTOR/Mcl-1 axis, as shown by the effects of mTOR activator MHY1485 and inhibitor rapamycin. Afatinib also increased Bim expression, mitochondrial membrane permeabilization, and cytochrome c release. It significantly lowered tumor volume without affecting body, liver, and kidney weights. CONCLUSION: Afatinib, targeting the EGFR/mTOR/Mcl-1 axis, shows promise as a therapeutic strategy for oral cancer, especially in patients with high EGFR and Mcl-1 expressions.

11.
Nutrients ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931325

RESUMO

Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.


Assuntos
Aminoácidos de Cadeia Ramificada , Biomarcadores , Doenças Cardiovasculares , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Doenças Cardiovasculares/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Microbioma Gastrointestinal , Resistência à Insulina , Transdução de Sinais , Diabetes Mellitus Tipo 2/metabolismo , Doença Crônica , Inflamação/metabolismo , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Metilaminas
12.
Eur J Haematol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853593

RESUMO

OBJECTIVES: Galectin-9 (Gal-9) is an immune checkpoint ligand for T-cell immunoglobulin and mucin domain 3. Although the roles of Gal-9 in regulating immune responses have been well investigated, their biological roles have yet to be fully documented. This study aimed to analyse the expression of Gal-9 bone marrow (BM) cells in C57BL/6J (B6) mice. Furthermore, the co-expression of Gal-9 with the mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) was investigated. METHODS: The BM cells in adult C57BL/6J (B6) mice were collected and analysed in vitro. RESULTS: In a flow cytometric analysis of BM cells, Gal-9 was highly expressed in c-KithiSca-1-CD34-CD71+ erythroid progenitors (EPs), whereas it was downregulated in more differentiated c-KitloCD71+TER119+ cells. Subsequently, a negative selection of CD3-B220-Sca-1-CD34-CD41-CD16/32- EPs was performed. This resulted in substantial enrichment of KithiCD71+Gal-9+ cells and erythroid colony-forming units (CFU-Es), suggesting that the colony-forming subset of EPs are included in the KithiCD71+Gal-9+ population. Furthermore, we found that EPs had lower mTOR and AMPK expression levels in Gal-9 knockout B6 mice than in wild-type B6 mice. CONCLUSIONS: These results may stimulate further investigation of the role of Gal-9 in haematopoiesis.

13.
Chin J Integr Med ; 30(9): 799-808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850481

RESUMO

OBJECTIVE: To investigate whether Buthus martensii karsch (Scorpiones), Scolopendra subspinipes mutilans L. Koch (Scolopendra) and Gekko gecko Linnaeus (Gekko) could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α (PI3K/AKT/mTOR/HIF-1α) signaling pathway. METHODS: Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models, with rapamycin and cyclophosphamide as positive controls. Carboxy methyl cellulose solutions of Scorpiones, Scolopendra and Gekko were administered intragastrically as 0.33, 0.33, and 0.83 g/kg, respectively once daily for 21 days. Fluorescent expression were detected every 7 days after inoculation, and tumor growth curves were plotted. Immunohistochemistry was performed to determine CD31 and HIF-1α expressions in tumor tissue and microvessel density (MVD) was analyzed. Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1α signaling pathway-related proteins. Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor (bFGF), transforming growth factor-ß1 (TGF-ß1) and vascular endothelial growth factor (VEGF) in mice. RESULTS: Scorpiones, Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α (all P<0.01). Moreover, Scorpiones, Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase (p70S6K) (P<0.05 or P<0.01). In addition, they also decreased the expression of CD31, MVD, bFGF, TGF-ß1 and VEGF compared with the model group (P<0.05 or P<0.01). CONCLUSION: Scorpiones, Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1α signaling pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Microambiente Tumoral , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Neovascularização Patológica , Hipóxia Tumoral/efeitos dos fármacos
14.
J Thorac Dis ; 16(5): 3007-3018, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883630

RESUMO

Background: The mammalian target of rapamycin (mTOR) inhibitors in combination with calcineurin inhibitors (CNIs), antimetabolites and corticosteroids for immunosuppression after lung transplantation (TPL) have gained importance in patients with chronic kidney disease (CKD). The goal of this study was to characterize lung transplant recipients (LTR) treated with mTOR inhibitors, with a special focus on kidney function. Methods: LTR transplanted at the University Hospital Zurich between December 1992 and April 2022 were analyzed. Demographics, estimated glomerular filtration rate (eGFR) before and after mTOR initiation, TPL circumstances, immunosuppressive regimens, and allograft function were recorded. We used linear regression to calculate the Mitch curves and a linear mixed-effects model to compare the eGFR. Results: Of all LTR, 70/593 (12%) received mTOR inhibitors. Intolerance or adverse events of antimetabolites were the most common indications for mTOR inhibitor introduction. Discontinuation in 34/70 (49%) was often related to planned or urgent surgery to prevent impaired wound healing. The majority of patients had a preserved baseline eGFR at mTOR inhibitor introduction with CKD Kidney Disease Improving Global Outcomes (KDIGO) stage G1 or 2. The mean annual eGFR decline changed significantly from -16.19 mL/min/1.73 m2/year [95% confidence interval (CI): -22.27 to -10.11] 12 months before to -6.16 mL/min/1.73 m2/year (95% CI: -13.37 to 1.05) 12 months after mTOR initiation (P=0.009) showing better outcomes with earlier mTOR inhibitor initiation after lung TPL. Conclusions: This retrospective study suggests stabilization of kidney function after mTOR inhibitor initiation in LTR documented by a slower eGFR decline after mTOR inhibitor introduction with better outcomes early after lung TPL. Intolerance or adverse events of antimetabolites are important indications for the introduction of mTOR inhibitors. A relatively high discontinuation rate (49%) can be explained by planned discontinuation of mTOR inhibitors prior to surgery to avoid impaired wound healing.

15.
Anim Nutr ; 17: 408-417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812495

RESUMO

A proper dietary electrolyte balance (dEB) is essential to ensure optimal growth performance of piglets. In the low-protein diet, this balance may be affected by the reduction of soybean meal and the inclusion of high levels of synthetic amino acids. The objective of this experiment was to evaluate the optimal dEB of low-protein diets and its impact on the growth performance of piglets. A total of 108 piglets (initial age of 35 d) were randomly divided into 3 groups with 6 replicates of 6 pigs each as follows: low electrolyte diet (LE group; dEB = 150 milliequivalents [mEq]/kg); medium electrolyte diet (ME group; dEB = 250 mEq/kg); high electrolyte diet (HE group; dEB = 350 mEq/kg). Results indicated that the LE and HE diet significantly decreased the average daily gain, average daily feed intake, and crude protein digestibility (P < 0.05) in piglets. Meanwhile, LE diets disrupted the structural integrity of the piglets' intestines and decreased jejunal tight junction protein (occludin and claudin-1) expression (P < 0.05). Additionally, the pH and HCO3- in the arterial blood of piglets in the LE group were lower than those in the ME and HE groups (P < 0.05). Interestingly, the LE diet significantly increased lysine content in piglet serum (P < 0.05), decreased the levels of arginine, leucine, glutamic acid, and alanine (P < 0.05), and inhibited the mammalian target of rapamycin complex 1 (mTORC1) pathway by decreasing the phosphorylation abundance of key proteins. In summary, the dietary electrolyte imbalance could inhibit the activation of the mTORC1 signaling pathway, which might be a key factor in the influence of the dEB on piglet growth performance and intestinal health. Moreover, second-order polynomial (quadratic) regression analysis showed that the optimal dEB of piglets in the low-protein diet was 250 to 265 mEq/kg.

16.
Chin Herb Med ; 16(2): 282-292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38706831

RESUMO

Objective: Myocardial infarction (MI) is linked to an imbalance in the supply and demand of blood oxygen in the heart muscles. Beta-blockers and calcium antagonists are just two of the common medications used to treat MI. However, these have reportedly been shown to be either ineffective or to have undesirable side effects. Extract of Ginkgo biloba leaves (GBE), a Chinese herbal product offers special compatibility benefits in therapeutic settings relating to inflammatory diseases and oxidative stress. In order to better understand how GBE affects MI in rats insulted by isoprenaline (ISO), the current study was designed. Methods: The heart weight index, serum lipid profile, cardiac marker enzymes, endogenous antioxidants [catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), nitrites and malondialdehyde (MDA)], inflammatory mediators [tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)], immunohistochemical expressions of B-cell lymphoma factor-2 (Bcl-2), extracellular signal-regulated kinase (ERK1/2), and mammalian target of rapamycin (mTOR) and histopathological analysis were used to assess the cardioprotective properties of GBE. Results: The findings showed that GBE effectively attenuated myocardial infarction by boosting the body's natural antioxidant defense system and reducing the release of inflammatory cytokines as well as heart injury marker enzymes. The expression of Bcl-2, ERK1/2 and mTOR was increased while the histomorphological alterations were reversed. Conclusion: The cardioprotective effects of GBE may be due to a mechanism involving increased Bcl-2/mTOR/ERK1/2/Na+, K+-ATPase activity.

17.
Oncol Lett ; 28(1): 298, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751752

RESUMO

Patients with non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-activating mutations can be treated with EGFR-tyrosine kinase inhibitors (TKIs). Although EGFR-TKI-targeted drugs bring survival promotion in patients with EGFR mutations, drug resistance is inevitable, so it is urgent to explore new treatments to overcome drug resistance. In addition, wild-type EGFR lacks targeted drugs, and new targeted therapies need to be explored. Ferroptosis is a key research direction for overcoming drug resistance. However, the role and mechanism of regulating ferroptosis in different EGFR-mutant NSCLC types remains unclear. In the present study, H1975 (EGFR T790M/L858R mutant), A549 (EGFR wild-type) and H3255 (EGFR L858R mutant) NSCLC cell lines were used. The expression of ferroptosis markers in these cell lines was detected using western blotting and reverse transcription-quantitative PCR. Cell viability was determined using the MTT assay and reactive oxygen species (ROS) levels were measured using flow cytometry. The results showed that, compared with EGFR wild-type/sensitive mutant cells, EGFR-resistant mutant cells were more sensitive to the ferroptosis inducer, erastin. Furthermore, the mammalian target of rapamycin (mTOR) inhibitor, everolimus (RAD001), induced cell death in all three cell lines in a dose-dependent manner. The ferroptosis inhibitor, ferrostatin-1, could reverse cell death in EGFR-resistant mutant and EGFR wild-type cells induced by RAD001, but could not reverse cell death in EGFR-sensitive mutant cells. Compared with EGFR wild-type/sensitive mutant cells, EGFR-resistant mutant cells were more sensitive to RAD001 combined with erastin. In addition, a high-dose of RAD001 reduced the expression levels of ferritin heavy-chain polypeptide 1 (FTH1), glutathione peroxidase 4 (GPX4) and ferroportin and significantly increased ROS and malondialdehyde (MDA) levels in EGFR-resistant mutant and EGFR wild-type cells. In the present study, GPX4 inhibitor only or combined with RAD001 inhibited the AKT/mTOR pathway in EGFR-resistant mutant cells. Therefore, the results of the present study suggested that inhibition of the mTOR pathway may downregulate the expression of ferroptosis-related proteins in EGFR-resistant and EGFR wild-type NSCLC cells, increase the ROS and MDA levels and ultimately induce ferroptosis.

18.
Front Pharmacol ; 15: 1344113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567351

RESUMO

Introduction: Diabetic kidney disease (DKD) necessitates innovative therapeutic strategies. This study delves into the role of DNA damage-inducing transcription factor 4 (DDIT4) within the VDR-mTOR pathway, aiming to identify a novel target for DKD drug discovery. Methods: Transcriptome data from the Gene Expression Omnibus Database were analyzed to assess the expression of mTOR and VDR expression in human renal tissues. Clinical samples from DKD patients and minimal change disease (MCD) controls were examined, and a DKD animal model using 20-week-old db/db mice was established. DDIT4 plasmid transfection was employed to modulate the VDR-mTOR pathway, with its components evaluated using immunohistochemistry, real-time quantitative PCR (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results: Changes in the expression of the VDR-mTOR pathway were observed in both DKD patients and the animal model. Overexpression of DDIT4 increased VDR expression and decreased levels of mTOR, p70s6k, and 4E-BP1. Furthermore, DDIT4 treatment regulated autophagy by upregulating LC3I expression and downregulating LC3II expression. Notably, DDIT4 alleviated oxidative stress by reducing the levels of lipid peroxidation product MDA, while simultaneously increasing the levels of superoxide dismutase (SOD) and glutathione (GSH), underscoring the role of DDIT4 in the pathological process of DKD and its potential as a therapeutic target. Conclusion: Unraveling DDIT4's involvement in the VDR-mTOR pathway provides insights for innovative DKD drug discovery, emphasizing its potential as a therapeutic target for future interventions.

19.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612754

RESUMO

Epstein-Barr Virus (EBV) exists in a latent state in 90% of the world's population and is linked to numerous cancers, such as Burkitt's Lymphoma, Hodgkin's, and non-Hodgkin's Lymphoma. One EBV latency protein, latency membrane protein 2A (LMP2A), is expressed in multiple latency phenotypes. LMP2A signaling has been extensively studied and one target of LMP2A is the mammalian target of rapamycin (mTOR). Since mTOR has been linked to reprogramming tumor metabolism and increasing levels of hypoxia-inducible factor 1 α (HIF-1α), we hypothesized that LMP2A would increase HIF-1α levels to enhance ATP generation in B lymphoma cell lines. Our data indicate that LMP2A increases ATP generation in multiple Burkitt lymphoma cell lines that were dependent on HIF-1α. Subsequent studies indicate that the addition of the mTOR inhibitor, rapamycin, blocked the LMP2A-dependent increase in HIF-1α. Further studies demonstrate that LMP2A does not increase HIF-1α levels by increasing HIF-1α RNA or STAT3 activation. In contrast, LMP2A and mTOR-dependent increase in HIF-1α required mTOR-dependent phosphorylation of p70 S6 Kinase and 4E-BP1. These findings implicate the importance of LMP2A in promoting B cell lymphoma survival by increasing ATP generation and identifying potential pharmaceutical targets to treat EBV-associated tumors.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Proteínas de Membrana , Serina-Treonina Quinases TOR , Trifosfato de Adenosina
20.
Curr Mol Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659267

RESUMO

BACKGROUND: This study investigates the inhibitory mechanism of anlotinib on human Mantle Cell Lymphoma (MCL) cells through in vitro and in vivo experiments. METHODS: In vitro cellular experiments validate the effects of anlotinib on MCL cell proliferation and apoptosis. Moreover, a subcutaneous xenograft nude mice model of Mino MCL cells was established to assess the anti-tumour effect and tumour microenvironment regulation of anlotinib in vivo. RESULTS: The results indicate that MCL cell proliferation was significantly inhibited upon anlotinib exposure. The alterations in the expression of apoptosis-related proteins further confirm that anlotinib can induce apoptosis in MCL cells. Additionally, anlotinib significantly reduced the PI3K/Akt/mTOR phosphorylation level in MCL cells. The administration of a PI3K phosphorylation agonist, 740YP, could reverse the inhibitory effect of anlotinib on MCL. In the xenograft mouse model using Mino MCL cells, anlotinib treatment led to a gradual reduction in body weight and a significant increase in survival time compared to the control group. Additionally, anlotinib attenuated PD-1 expression and elevated inflammatory factors, CD4, and CD8 levels in tumour tissues. CONCLUSION: Anlotinib effectively inhibits proliferation and induces apoptosis in MCL both in vitro and in vivo. This inhibition is likely linked to suppressing phosphorylation in the PI3K/Akt/mTOR pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA