Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430911

RESUMO

To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.


Assuntos
Cabras , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Feminino , Animais , Gravidez , Cabras/genética , Fosfatidilinositol 3-Quinases , Lactação/genética , Perfilação da Expressão Gênica
2.
Biomed Pharmacother ; 155: 113675, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115110

RESUMO

BACKGROUND: Breast cancer prevalence has been globally increasing, therefore, introducing novel interventions in cancer treatment is of a significant importance. The present study was designed to investigate the anti-cancer effect of Canagliflozin (CNG) in an experimental model of DMBA-induced mammary carcinoma in female rats. METHODS: 18 female rats were divided into three experimental groups: Normal control, DMBA control, DMBA+ CNG treated group. DMBA (7.5 mg/kg) was injected subcutaneously in the mammary cells twice weekly for 4 weeks and CNG (10 mg/kg) was orally administered daily for an additional 3 weeks while DMBA control rats only received the vehicle for 3 weeks. Tumors' weight and volume were measured, BRCA-1 and TAC were quantified in serum samples, mTOR, caspase-1, NFκB, IL-1ß, NLRP3, GSDMD and MDA were quantified in tumors' homogenates. RESULTS: CNG treatment increased the BRCA-1 expression, suppressed mTOR inflammatory pathway, attenuated tumor inflammatory mediators; NLRP3, GSDMD, NFκB, IL-1ß, suppressed the oxidative stress and inhibited tumor expression of the proliferation biomarker; Ki67. CONCLUSION: CNG modulated mTOR-mediated signaling pathway and attenuated pyroptotic, inflammatory pathways, suppressed oxidative stress and eventually inhibited DMBA-induced mammary carcinoma proliferation.


Assuntos
Carcinoma , Neoplasias Mamárias Experimentais , Ratos , Feminino , Animais , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Antígeno Ki-67/metabolismo , Canagliflozina , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/prevenção & controle , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Caspase 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mediadores da Inflamação
3.
J Anim Sci Biotechnol ; 11: 53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477515

RESUMO

BACKGROUND: Characterising the regulation of milk component synthesis in response to macronutrient supply is critical for understanding the implications of nutritional interventions on milk production. Gene expression in mammary gland secretory cells was measured using RNA isolated from milk fat globules from 6 Holstein-Friesian cows receiving 5-d abomasal infusions of saline, essential amino acids (AA), or glucose (GG) or palm olein (LG) without (LAA) or with (HAA) essential AA, according to a 6 × 6 Latin square design. RNA was isolated from milk fat samples collected on d 5 of infusion and subjected to real-time quantitative PCR. We hypothesised that mRNA expression of genes involved in de novo milk fatty acid (FA) synthesis would be differently affected by GG and LG, and that expression of genes regulating transfer of tricarboxylic acid cycle intermediates would increase at the HAA level. We also hypothesised that the HAA level would affect genes regulating endoplasmic reticulum (ER) homeostasis but would not affect genes related to the mechanistic target of rapamycin complex 1 (mTORC1) or the integrated stress response (ISR) network. RESULTS: Infusion of GG did not affect de novo milk FA yield but decreased expression of FA synthase (FASN). Infusion of LG decreased de novo FA yield and tended to decrease expression of acetyl-CoA carboxylase 1 (ACC1). The HAA level increased both de novo FA yield and expression of ACC1, and tended to decrease expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). mRNA expression of mTORC1 signaling participants was not affected by GG, LG, or AA level. Expression of the ε subunit of the ISR constituent eukaryotic translation initiation factor 2B (EIF2B5) tended to increase at the HAA level, but only in the presence of LG. X-box binding protein 1 (XBP1) mRNA was activated in response to LG and the HAA level. CONCLUSIONS: Results show that expression of genes involved in de novo FA synthesis responded to glucogenic, lipogenic, and aminogenic substrates, whereas genes regulating intermediate flux through the tricarboxylic acid cycle were not majorly affected. Results also suggest that after 5 d of AA supplementation, milk protein synthesis is supported by enhanced ER biogenesis instead of signaling through the mTORC1 or ISR networks.

4.
In Vitro Cell Dev Biol Anim ; 56(5): 386-398, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32472301

RESUMO

This study aimed to establish an in vitro model for lipid synthesis in primary bovine mammary epithelial cells (pbMECs) extracted from milk and cultured on Transwell permeable supports (TW culture). The suitability of these cells as a functional model for lactation was assessed by measuring κ-casein (CSN3) and diacylglycerol acyl transferase 1 (DGAT1) gene expression, the presence of intracellular lipid droplets, and the concentration of triacylglycerol in the cell lysates. The functionality of the milk-derived pbMECs cultured under lactogenic conditions, with and without oleic acid supplementation, was evaluated by comparing the cells grown on Transwell supports to cells grown on an extracellular matrix (ECM) gel (3D culture) or a plastic surface (2D culture). Furthermore, the functionality of milk-derived cells was compared to pbMECs obtained from bovine mammary tissue. Here, we show that in both tissue and milk-derived pbMECs, 3D culture offered the most suitable in vitro environment and led to increased levels of CSN3 and DGAT1 gene expression along with increased intracellular triacylglycerol content. The TW culture conditions also resulted in increased DGAT1 gene expression compared to the 2D conditions and milk-derived pbMECs cultured on TW inserts showed the highest viability compared to cells grown under 2D or 3D treatments. However, this was not observed for tissue-derived pbMECs, suggesting that TW culture may offer a beneficial environment specifically for milk-derived cells. We suggest that with further optimization of the culture conditions, TW culture may present a suitable model for the study of milk lipid synthesis in pbMECs.


Assuntos
Células Epiteliais/citologia , Lactação , Glândulas Mamárias Animais/citologia , Membranas Artificiais , Leite/citologia , Modelos Biológicos , Animais , Caseínas/genética , Caseínas/metabolismo , Bovinos , Polaridade Celular , Proliferação de Células , Sobrevivência Celular , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Impedância Elétrica , Feminino , Queratina-8/genética , Queratina-8/metabolismo , Permeabilidade , Triglicerídeos/metabolismo
5.
J Dairy Sci ; 102(9): 8127-8133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326165

RESUMO

The synthesis of protein requires the availability of specific AA and a large supply of energy in bovine mammary epithelial cells (BMEC). Whether an interaction exists between Lys/Met ratio and glucose level on milk protein synthesis and its potential regulatory mechanism is unclear. We investigated the effects of different Lys/Met ratios and glucose levels on casein synthesis-related gene expression in BMEC to elucidate the underlying molecular mechanisms. Primary BMEC were subjected to 4 treatments for 36 h, arranged in a 2 × 2 factorial design with Lys/Met ratios of 3:1 (1.2:0.4 mM, LM3.0; total AA = 8.24 mM) and 2.3:1 (1.4:0.6 mM, LM2.3; total AA = 8.64 mM) and glucose levels of 17.5 mM (high glucose level) and 2.5 mM (low glucose level). No interactions between Lys/Met ratio and glucose level on cell viability, cell cycle progression, mRNA, or protein expression levels were found. High glucose level increased cell proliferation and promoted cell cycle transition from intermediate phase (G1 phase) to synthesis (S phase) by approximately 50%, whereas Lys/Met ratio had no effect. Both mRNA and protein abundance of αS1-casein and ß-casein were positively affected by LM3.0, whereas a high glucose level increased protein abundance of αS1-casein and ß-casein and increased gene expression of CSN1S1 but not of CSN2. Furthermore, high glucose increased the mRNA abundance of ELF5 and decreased that of GLUT8, enhanced protein expression of total and phosphorylated mechanistic target of rapamycin (mTOR), and decreased phosphorylated AMP-activated protein kinase (AMPK) levels. Treatment LM3.0 had a stimulatory effect on total and phosphorylated mTOR but did not affect AMPK phosphorylation. The mRNA levels of JAK2, ELF5, and RPS6KB1 were upregulated and mRNA levels of EIF4EBP1 were downregulated with LM3.0 compared with LM2.3. Our results indicate that casein synthesis was regulated by Lys/Met ratio via JAK2/ELF5, mTOR, and its downstream RPS6KB1 and EIF4EBP1 signaling. In contrast, glucose regulated casein synthesis through promoting cell proliferation, accelerating cell cycle progression, and activating the ELF5 and AMPK/mTOR signaling pathways. Within the range of substrate levels in the present study, a change in Lys/Met ratio had a stronger effect on abundance of αS1-casein and ß-casein than a change in glucose level.


Assuntos
Caseínas/biossíntese , Bovinos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Lisina/administração & dosagem , Metionina/administração & dosagem , Animais , Caseínas/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Glucose/análise , Glândulas Mamárias Animais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/efeitos dos fármacos
6.
J Dairy Sci ; 102(7): 6603-6613, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31103304

RESUMO

Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.


Assuntos
Ração Animal , Bovinos/metabolismo , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Metabolismo Energético/genética , Glândulas Mamárias Animais/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/análise , Feminino , Lactação , Glândulas Mamárias Animais/citologia , Leite , Silagem , Zea mays
7.
Artigo em Inglês | MEDLINE | ID: mdl-30410753

RESUMO

BACKGROUND: Persistent lactation, as the result of mammary cellular anabolism and secreting function, is dependent on substantial mobilization or catabolism of body reserves under nutritional deficiency. However, little is known about the biochemical mechanisms for nutrition-restricted lactating animals to simultaneously maintain the anabolism of mammary cells while catabolism of body reserves. In present study, lactating sows with restricted feed allowance (RFA) (n = 6), 24% feed restriction compared with the control (CON) group (n = 6), were used as the nutrition-restricted model. Microdialysis and mammary venous cannulas methods were used to monitor postprandial dynamic changes of metabolites in adipose and mammary tissues. RESULTS: At lactation d 28, the RFA group showed higher (P < 0.05) loss of body weight and backfat than the CON group. Compared with the CON group, the adipose tissue of the RFA group had higher (P < 0.05) extracellular glutamate and insulin levels, increased (P < 0.05) lipolysis related genes (HSL and ATGL) expression, and decreased (P < 0.05) glucose transport and metabolism related genes (VAMP8, PKLR and LDHB) expression. These results indicated that under nutritional restriction, reduced insulin-mediated glucose uptake and metabolism and increased lipolysis in adipose tissues was related to extracellular high glutamate concentration. As for mammary glands, compared with the CON group, the RFA group had up-regulated (P < 0.05) expression of Notch signaling ligand (DLL3) and receptors (NOTCH2 and NOTCH4), higher (P < 0.05) extracellular glutamate concentration, while expression of cell proliferation related genes and concentrations of most metabolites in mammary veins were not different (P > 0.05) between groups. Accordingly, piglet performance and milk yield did not differ (P > 0.05) between groups. It would appear that activation of Notch signaling and adequate supply of glutamate might assist mammogenesis. CONCLUSIONS: Mammary cell proliferation and catabolism of adipose tissues in nutrition-restricted lactating sows were associated with extracellular high glutamate levels.

8.
J Agric Food Chem ; 66(9): 2101-2107, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29446933

RESUMO

Eighteen lactating goats (38.86 ± 2.06 kg) were randomly allocated to three groups. One group was fed a low-concentrate (LC) diet (forage:concentrate = 6:4), while the other two groups were fed a high-concentrate (HC) diet (forage:concentrate = 4:6) or an HC diet supplemented with sodium butyrate (BHC) for 20 weeks. Samples of ruminal fluid, milk, hepatic blood plasma, and mammary gland tissue were prepared for the experimental analysis. The lipopolysaccharide (LPS) concentration, caspase-3 and -8 enzymatic activity, caspase-3 and -8 mRNA expression, and NF-κB (p65), phosphorylated-p65, bax, cytochrome c, and caspase-3 protein expression were higher in the HC group than those in the LC group; however, the levels of these parameters were lower in the BHC group than those in the HC group. Moreover, bcl-2 mRNA and protein expression was higher in the BHC group than that in the HC or LC groups, and no significant difference was observed between the HC and LC groups. Thus, feeding lactating goats an HC diet induces apoptosis in mammary cells, and supplementing the diet with sodium butyrate reduces the concentrations of LPS and proinflammatory cytokines, subsequently attenuating the activation of NF-κB and caspase-3 and eventually inhibiting apoptosis in mammary cells.


Assuntos
Ração Animal/análise , Apoptose , Ácido Butírico/metabolismo , Suplementos Nutricionais/análise , Cabras/metabolismo , Glândulas Mamárias Animais/citologia , Animais , Apoptose/efeitos dos fármacos , Ácido Butírico/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Feminino , Cabras/genética , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Rúmen/efeitos dos fármacos , Rúmen/metabolismo
9.
J Photochem Photobiol B ; 180: 98-108, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29413708

RESUMO

Owing to their structural novelty and inherent three-dimensionality, spiro scaffolds have been shown indisputable promise as chemopreventive agents. A new series of heterocycles containing spirooxindole and pyrrolidine rings were synthesized by the 1,3-dipolar cycloaddition of an azomethine ylide, which was generated in situ by the condensation of a secondary amino acid (l­proline) and dicarbonyl compounds (isatin), with dipolarophiles. This method is simple and provides diverse and biologically interesting products. The new series of compounds with a high degree of stereo- and regioselectivity were evaluated against breast cancer cell lines (MCF-7) and leukemia (K562). Among them, compound 4g was identified as the most potent with IC50 values of 15.49 ±â€¯0.04 µM, against breast cancer cell lines (MCF-7) compared to standard drug 5-Fu (IC50 = 78.28 ±â€¯0.2 µM) and compound 4i IC50 values of 13.38 ±â€¯0.14 µM against leukemia (K562) compared to standard drug 5-fluorouracil (5-FU) (IC50 = 38.58 ±â€¯0.02). The selective apoptotic effects of 4g were investigated against MCF-12 normal mammary cell and the cytotoxicity of 4g was not associated with any induction of necrosis compared to untreated cells. Molecular docking studies were investigated. From the docking data, these compounds could be act as small molecules that inhibit the MDM2-p53 interaction.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Indóis/química , Simulação de Acoplamento Molecular , Compostos de Espiro/química , Antineoplásicos/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Reação de Cicloadição , Fluoruracila/farmacologia , Humanos , Células K562 , Células MCF-7 , Conformação Molecular , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Teoria Quântica , Estereoisomerismo
10.
Biometals ; 31(1): 69-80, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29178026

RESUMO

The viability, cellular uptake and subcellular distribution of heavy metal Hg, were determined in human mammary cell lines (MCF-7, MDA-MB-231 and MCF-10A). It was observed that Hg had the capacity of being excluded from the cells with a different type of possible transporters. MCF-7 cells showed the lowest viability, while the other two cell lines were much more resistant to Hg treatments. The intracellular concentration of Hg was higher at lower exposure times in MCF-10A cells and MCF-7 cells; but as the time was increased only MDA-MB-231 showed the capacity to continue introducing the metal. In MCF-7 and MCF-10A cells the subcellular distribution of Hg was higher in cytosolic fraction than nucleus and membrane, but MDA-MB-231 showed membrane and nucleus fraction as the enriched one. The analysis of RNA-seq about the genes or family of genes that encode proteins which are related to cytotoxicity of Hg evidenced that MCF-10A cells and MCF-7 cells could have an active transport to efflux the metal. On the contrary, in MDA-MB-231 no genes that could encode active transporters have been found.


Assuntos
Membrana Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mercúrio/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Cátions Bivalentes , Linhagem Celular , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Cinética , Células MCF-7 , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Mercúrio/toxicidade , Especificidade de Órgãos , Proteínas de Transporte de Cátions Orgânicos/classificação , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transdução de Sinais
11.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046454

RESUMO

Increasing evidence suggests that repetitive elements may play a role in host gene regulation, particularly through the donation of alternative promoters, enhancers, splice sites, and termination signals. Elevated transcript expression of the endogenous retrovirus group HERV-K (HML-2) is seen in many human cancers, although the identities of the individual proviral loci contributing to this expression as well as their mechanisms of activation have been unclear. Using high-throughput next-generation sequencing techniques optimized for the capture of HML-2 expression, we characterized the HML-2 transcriptome and means of activation in an in vitro model of human mammary epithelial cell transformation. Our analysis showed significant expression originating from 15 HML-2 full-length proviruses, through four modes of transcription. The majority of expression was in the antisense orientation and from proviruses integrated within introns. We found two instances of long terminal repeat (LTR)-driven provirus transcription but no evidence to suggest that these active 5' LTRs were influencing nearby host gene expression. Importantly, LTR-driven transcription was restricted to tumorigenic cells, suggesting that LTR promoter activity is dependent upon the transcriptional environment of a malignant cell.IMPORTANCE Here, we use an in vitro model of human mammary epithelial cell transformation to assess how malignancy-associated shifts in the transcriptional milieu of a cell may impact HML-2 activity. We found 15 proviruses to be significantly expressed through four different mechanisms, with the majority of transcripts being antisense copies of proviruses located within introns. We saw active 5' LTR use in tumorigenic cells only, suggesting that the cellular environment of a cancer cell is a critical component for induction of LTR promoter activity. These findings have implications for future studies investigating HML-2 as a target for immunotherapy or as a biomarker for disease.


Assuntos
Transformação Celular Viral , Retrovirus Endógenos/genética , Células Epiteliais/virologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/virologia , Transcrição Gênica , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Genoma Humano , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Regiões Promotoras Genéticas , Provírus/genética , Sequências Repetidas Terminais , Transcriptoma
12.
Cancer Cell Int ; 17: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270739

RESUMO

BACKGROUND: Absence of the estrogen receptor-α (ER) is perhaps the most distinctive pathological feature of breast cancers arising in women who inherit a mutation in BRCA1. Two hypotheses, not necessarily mutually exclusive, exist in the literature that describe mechanisms of ER transcriptional repression in breast cancer. One hypothesis suggests that methylation of cytosine-guanine dinucleotides (CpGs) primarily mediates repression, while the other maintains that transcriptional control is mediated by certain positive and negative promoter elements. METHODS: To determine if wild type BRCA1 could induce activity of the ER promoter, we performed a series of transient transfections with ER promoter segments linked to a luciferase reporter. The effect of BRCA1 on endogenous ER expression was evaluated by RNA analysis. RESULTS: Following cotransfection with a BRCA1 expression plasmid, we observed that ER promoter-driven luciferase activity was significantly increased in both MCF10A and IMEC cells (p < 0.005 and 0.0005 respectively, two-tailed t test). Specifically, the full length ER promoter construct showed approximately 5.6-fold (MCF10A) and tenfold (IMEC) increases in luciferase activity following BRCA1 transfection, compared with transfection with an empty expression plasmid (i.e. lacking BRCA1 sequence). We localized the ER promoter segment responsible for transactivation by BRCA1 to a 109 bp region containing an AP2γ homologous site. CONCLUSIONS: The work described here, along with previously published work, indicates that activity of certain transcriptional regulatory elements and CpG methylation both represent important mechanisms by which the ER gene is typically inactive in breast cancers associated with BRCA1 mutations. The absence of ER in these breast cancers has significant implications for pathogenesis, prevention, and treatment.

13.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 54(2): 188-196, 2017. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-875128

RESUMO

The expression of milk proteins in vitro is essential to exploit the mammary gland cells as a biological model. Enzymatic tissue disaggregation has been widely used to establish mammary cell culture, but its effect in long-term ovine mammary cell culture is not completely elucidated. This study aimed at comparing mechanical/enzymatic and mechanical dissociation methods to establish ovine mammary cell culture. We compared cellular differentiation induced by lactating ewe serum or fetal bovine serum based on the gene expression levels of milk proteins (beta-lactoglobulin, alpha s1-casein, and betacasein). Mechanically dissociated cells were positive immunostaining for cytokeratin 8.13, such as mammary epithelial cells. These cells are responsible for milk protein expression and they are low immunostaining for vimentin, mesenchymal marker. Mechanical/enzymatic dissociation cells were positive for vimentin. The fastest cell growth (cell/hour) was observed in the mechanical dissociation group cultured with 10% fetal bovine serum medium. Mechanically and mechanically/enzymatically derived cells were able to express beta-casein and beta-lactoglobulin, but not alpha s1-casein. The relative expression of beta-lactoglobulin was not affected by the tissue dissociation method or culture media, beta-casein relative expression was down regulated in mechanically dissociated cells cultured in the presence of lactating ewe serum, (P = 0.019). Beta-casein relative expression was also down regulated in mechanically/enzymatically dissociated cells cultured with fetal bovine serum (P = 0.021). In the present conditions, we conclude that mechanical dissociation followed by culture with 10% of fetal bovine serum was the most efficient method to induce milk proteins' mRNA expression by ovine mammary epithelial cells in vitro.(AU)


A expressão in vitro de proteínas do leite é essencial para explorar as células da glândula mamária como um modelo biológico. A desagregação tecidual via enzimática é amplamente utilizada para o estabelecimento cultivo de células mamárias. No entanto, seu efeito a longo prazo no cultivo de células da glândula mamária ovina ainda não é bem elucidado. Este estudo tem como objetivo comparar dois métodos de dissociação tecidual, mecânico/enzimático e mecânico, para estabelecer cultivo celular de glândula mamária ovina. A indução da diferenciação celular, por adição de soro de ovelha lactante ou soro fetal bovino, foi avaliada pelos níveis de expressão de proteínas do leite (beta-lactoglobulina, alpha s1-caseína e beta-caseína). Células mecanicamente dissociadas foram positivamente marcadas para a presença de citoqueratina 8.13, marcador para células epiteliais mamárias. Essas células são as responsáveis pela produção das proteínas do leite e são pouco marcadas para a presença de vimentina, marcador para células de origem mesenquimal. Já as células obtidas da dissociação mecânica/ enzimática foram positivamente marcadas para presença de vimentina. A maior velocidade de crescimento (células/hora) foi observado para o grupo com dissociação mecânica cultivado em meio com 10% de soro fetal bovino. As células obtidas tanto da dissociação mecânica quanto mecânica/enzimática foram capazes de expressar beta-lactoglobulina e beta-caseína, mas não alfa s1-caseína. A expressão relativa de beta-lactoglobulina não foi afetada pelo método de dissociação ou meio de cultivo. A expressão relativa da beta-caseína foi negativamente regulada para células mecanicamente dissociadas e cultivadas na presença de soro de ovelha lactante (P = 0,019). A expressão relativa da beta-caseína também foi negativamente regulada para células dissociadas de forma mecânica/enzimática e cultivadas com soro fetal bovino (P = 0,021). Nas condições do presente estudo, concluímos que o método de dissociação mecânica seguido pelo cultivo em meio com 10% de soro fetal bovino foi o método mais eficiente para induzir a expressão mRNA de proteínas do leite por células epiteliais mamárias ovinas in vitro.(AU)


Assuntos
Animais , Feminino , Caseínas/análise , Lactoglobulinas/análise , Glândulas Mamárias Animais/citologia , Proteínas do Leite/análise , Ovinos , Técnicas de Cultura de Células/veterinária
14.
Physiol Genomics ; 46(7): 268-75, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24474444

RESUMO

This study was conducted to determine the optimum ratio of lysine and methionine (Lys:Met) to enhance milk protein concentration in vitro, focusing on the regulation of genes related to the JAK2-STAT5 and the mammalian target of rapamycin (mTOR) signaling pathways. A preliminary dose response study revealed that casein concentration peaked (2.5-2.7 ppm) at a supplemental Lys concentration of 1.2 mM and Met at 0.5 mM. At the peak casein concentration cell proliferation rate also was higher. Furthermore, the expression of CSN1S1, CSN1S2, CSN2, CSN3, LALBA, JAK2, STAT5, and MTOR was upregulated with both Lys and Met compared with the control. A subsequent experiment was conducted as a 5 × 3 factorial design with supplemental Lys plus Met at different ratios. When the supplemental concentration of Lys was 1.2 mM and Met was 0.4 mM (∼3:1), the concentration of casein peaked. Therefore, we measured gene expression, mTOR protein expression, and phosphorylated mTOR (p-mTOR) in cultures incubated with 3:1 Lys:Met (Lys&Met). Expression of CSN1S1 and LALBA were the most highly expressed genes (P < 0.01). The upregulation of CSN2, CSN3, CSN1S2 isoforms (P < 0.01) and JAK2, ELF5, mTOR (P < 0.05) was also observed. Total mTOR protein expression was greater (P < 0.05) with Lys alone and also Lys&Met. However, Lys&Met resulted in the greatest (P < 0.05) p-mTOR. Results suggest that peak concentration of casein at a supplemental 3:1 Lys:Met is driven in part via upregulation of the mRNA expression of components of the JAK-STAT and mTOR pathways.


Assuntos
Expressão Gênica , Lisina/metabolismo , Glândulas Mamárias Animais/citologia , Metionina/metabolismo , Proteínas do Leite/genética , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Animais , Bovinos , Citometria de Fluxo , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA