Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.067
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 650, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951796

RESUMO

BACKGROUND: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS: For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS: Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.


Assuntos
Cyprinidae , Inflamação , Animais , Cyprinidae/metabolismo , Cyprinidae/genética , Inflamação/metabolismo , Inflamação/genética , Imunidade Inata , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linhagem Celular , Sistemas CRISPR-Cas , Interferon Tipo I/metabolismo , Edição de Genes , Regulação da Expressão Gênica
2.
Front Oncol ; 14: 1412212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957320

RESUMO

Introduction: Oral cavity squamous cell carcinoma (OSCC) occurs most frequently in patients >60 years old with a history of tobacco and alcohol use. Epidemiological studies describe increased incidence of OSCC in younger adults (<45 years). Despite its poor prognosis, knowledge of OSCC tumor microenvironment (TME) characteristics in younger adults is scarce and could help inform possible resistance to emerging treatment options. Methods: Patients with OSCC were evaluated using TCGA-HNSC (n=121) and a stage and subsite-matched institutional cohort (n=8) to identify differential gene expression focusing on the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) processes in younger (≤45 years) vs. older adults (≥60 years). NanoString nCounter analysis was performed using isolated total RNA from formalin-fixed paraffin-embedded (FFPE) tumor samples. Stained tumor slides from young and old OSCC patients were evaluated for CD8+ T-cell counts using immunohistochemistry. Results: Younger OSCC patients demonstrated significantly increased expression of ECM remodeling and EMT process genes, as well as TME immunosuppression. Gene set enrichment analyses demonstrated increased ECM pathways and concurrent decreased immune pathways in young relative to old patients. Transcripts per million of genetic markers involved in ECM remodeling including LAMB3, VCAN, S100A9, COL5A1, and ITGB2 were significantly increased in tumors of younger vs. older patients (adjusted p-value < 0.10). Young patient TMEs demonstrated a 2.5-fold reduction in CD8+ T-cells as compared to older patients (p < 0.05). Conclusion: Differential gene expression impacting ECM remodeling and TME immunosuppression may contribute to disease progression in younger adult OSCC and has implications on response to evolving treatment modalities, such as immune checkpoint inhibitor therapy.

3.
Front Immunol ; 15: 1379570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957465

RESUMO

There is a reciprocal relationship between extracellular matrix (ECM) remodelling and inflammation that could be operating in the progression of severe COVID-19. To explore the immune-driven ECM remodelling in COVID-19, we in this explorative study analysed these interactions in hospitalised COVID-19 patients. RNA sequencing and flow analysis were performed on peripheral blood mononuclear cells. Inflammatory mediators in plasma were measured by ELISA and MSD, and clinical information from hospitalised COVID-19 patients (N=15) at admission was included in the analysis. Further, we reanalysed two publicly available datasets: (1) lung tissue RNA-sequencing dataset (N=5) and (2) proteomics dataset from PBCM. ECM remodelling pathways were enriched in PBMC from COVID-19 patients compared to healthy controls. Patients treated at the intensive care unit (ICU) expressed distinct ECM remodelling gene profiles compared to patients in the hospital ward. Several markers were strongly correlated to immune cell subsets, and the dysregulation in the ICU patients was positively associated with plasma levels of inflammatory cytokines and negatively associated with B-cell activating factors. Finally, our analysis of publicly accessible datasets revealed (i) an augmented ECM remodelling signature in inflamed lung tissue compared to non-inflamed tissue and (ii) proteomics analysis of PBMC from severe COVID-19 patients demonstrated an up-regulation in an ECM remodelling pathway. Our results may suggest the presence of an interaction between ECM remodelling, inflammation, and immune cells, potentially initiating or perpetuating pulmonary pathology in severe COVID-19.


Assuntos
COVID-19 , Matriz Extracelular , Leucócitos Mononucleares , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/sangue , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Matriz Extracelular/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Idoso , Citocinas/sangue , Proteômica/métodos , Pulmão/imunologia , Pulmão/patologia , Adulto
4.
Biomater Adv ; 163: 213936, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959652

RESUMO

Matrix stiffening is one of the major risk factors for hepatocellular carcinoma (HCC) and drives tumor progression. The extracellular matrix (ECM) stiffness of HCC displays mechanical heterogeneity, with stiffness increasing from the core to the invasive frontier. The distribution of liver cancer stem cells (CSCs) is related to this mechanical property. However, it is not sufficiently understood how heterogeneous matrix stiffness regulates the stemness of CSCs. In this study, we developed an adjustable gelatin/alginate hydrogel to investigate the effect of various matrix stiffnesses on CSC stemness under three-dimensional culture conditions. Gelatin/alginate hydrogel with the stiffness of soft (5 kPa), medium (16 kPa), and stiff (81 kPa) were prepared by altering the concentration of calcium ions. It was found that a stiffer matrix promoted stemness-associated gene expression, reduced drug sensitivity, enhanced sphere-forming and clonogenic ability, and tumorigenic potential. Mechanistically, matrix stiffening facilitates CSC stemness by increasing Yes-associated protein (YAP) activity and inhibiting Bcl-2 modifying factor (BMF) expression. Knockdown of YAP or overexpression of BMF significantly attenuated matrix stiffening-induced stemness, suggesting the involvement of YAP and BMF in this process. Together, our results unravel the regulatory mechanism of heterogeneous matrix stiffness on CSC stemness and also provide a novel therapeutic strategy for eradicating CSCs and improving the efficiency of HCC treatment.

5.
J Hazard Mater ; 476: 135029, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959830

RESUMO

Co-combustion of industrial and municipal solid wastes has emerged as the most promising disposal technology, yet its effect on unknown contaminants generation remains rarely revealed due to waste complexity. Hence, six batches of large-scale engineering experiments were designed in an incinerator of 650 t/d, which overcame the inauthenticity and deviation of laboratory tests. 953-1772 non-targeted compounds were screened in fly ash. Targeting the impact of co-combustion, a pseudo-component matrix model was innovatively integrated to quantitatively extract nine components from complex wastes grouped into biomass and plastic. Thus, the influence was evaluated across eight dimensions, covering molecular characteristics and toxicity. The effect of co-combustion with biomass pseudo-components was insignificant. However, co-combustion with high ratios of plastic pseudo-components induced higher potential risks, significantly promoting the formation of unsaturated hydrocarbons, highly unsaturated compounds (DBE≥15), and cyclic compounds by 19 %- 49 %, 17 %- 31 %, and 7 %- 27 %, respectively. Especially, blending with high ratios of PET plastic pseudo-components produced more species of contaminants. Unique 2 Level I toxicants, bromomethyl benzene and benzofuran-2-carbaldehyde, as well as 4 Level II toxicants, were locked, receiving no concern in previous combustion. The results highlighted risks during high proportion plastics co-combustion, which can help pollution reduction by tuning source wastes to enable healthy co-combustion.

6.
Glia ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946065

RESUMO

Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38946426

RESUMO

Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.

9.
FASEB J ; 38(13): e23785, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949120

RESUMO

Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple-negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple-negative breast cancer extravasation, as these mechanisms may be potential new targets for anti-metastasis therapy.


Assuntos
Glicocálix , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Glicocálix/metabolismo , Glicocálix/patologia , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Microambiente Tumoral/fisiologia , Animais , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Metástase Neoplásica , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia
10.
J Neurosurg Pediatr ; : 1-10, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968622

RESUMO

OBJECTIVE: The objective of this study was to evaluate whether volumetric measurements on early cranial ultrasound (CUS) in high-grade germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) are associated with hydrocephalus and neurodevelopmental metrics. METHODS: A retrospective case series analysis of infants with high-grade GMH-IVH admitted to the St. Louis Children's Hospital neonatal intensive care unit between 2007 and 2015 who underwent neurodevelopmental testing using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III) at 2 years of corrected age was performed. GMH volume, periventricular hemorrhagic infarction volume, and frontotemporal horn ratio were obtained from direct review of neonatal CUS studies. Univariate and multivariable regression models were used to evaluate the association between hemorrhage volumes and hydrocephalus requiring permanent CSF diversion with ventricular shunt or endoscopic third ventriculostomy with or without choroid plexus cauterization and composite Bayley-III cognitive, language, and motor scores. RESULTS: Forty-three infants (29 males, mean gestational age 25 weeks) met the inclusion criteria. The mean age at time of the CUS with the largest hemorrhage volume or first diagnosis of highest grade was 6.2 days. Nineteen patients underwent treatment for hydrocephalus with permanent CSF diversion. In multivariable analyses, larger GMH volume was associated with worse estimated Bayley-III cognitive (left-sided GMH volume: p = 0.048, total GMH volume: p = 0.023) and motor (left-sided GMH volume: p = 0.010; total GMH volume: p = 0.014) scores. Larger periventricular hemorrhagic infarction volume was associated with worse estimated Bayley-III motor scores (each side p < 0.04). Larger left-sided (OR 2.55, 95% CI 1.10-5.88; p = 0.028) and total (OR 1.35, 95% CI 1.01-1.79; p = 0.041) GMH volumes correlated with hydrocephalus. There was no relationship between early ventricular volume and hydrocephalus or neurodevelopmental outcomes. CONCLUSIONS: Location-specific hemorrhage volume on early CUS may be prognostic for neurodevelopmental and hydrocephalus outcomes in high-grade GMH-IVH.

11.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969002

RESUMO

Adipose tissue (AT) expands through both hyperplasia and hypertrophy. During adipogenesis, adipose stromal and progenitor cells (ASPCs) proliferate and then accumulate lipids, influenced by the local AT microenvironment. Increased adipogenic capacity is desirable as it relates to metabolic health, especially in transition dairy cows where excess free fatty acids in circulation can compromise metabolic and immune health. Our aim was to elucidate the depot-specific adipogenic capacity and ECM properties of subcutaneous (SAT) and visceral (VAT) AT of dairy cows and define how the ECM affects adipogenesis. Flank SAT and omental VAT samples were collected from dairy cows in a local abattoir. Tissue samples were utilized for transcriptome analysis, targeted RT-qPCR for adipogenic markers, adipocyte sizing, assessment of viscoelastic properties and collagen accumulation, and then decellularized for native ECM isolation. For in vitro analyses, SAT and VAT samples were digested via collagenase, and ASPCs cultured for metabolic analysis. Adipogenic capacity was assessed by adipocyte size, quantification of ASPCs in stromal vascular fraction (SVF) via flow cytometry, and gene expression of adipogenic markers. In addition, functional assays including lipolysis and glucose uptake were performed to further characterize SAT and VAT adipocyte metabolic function. Data were analyzed using SAS (version 9.4; SAS institute Inc., Cary, NC) and GraphPad Prism 9. Subcutaneous AT adipogenic capacity was greater than VAT's, as indicated by increased ASPCs abundance, increased magnitude of adipocyte ADIPOQ and FASN expression during differentiation, and higher adipocyte lipid accumulation as shown by an increased proportion of larger adipocytes and abundance of lipid droplets. Rheologic analysis revealed that VAT is stiffer than SAT, which led us to hypothesize that differences between SAT and VAT adipogenic capacity were partly mediated by depot-specific ECM microenvironment. Thus, we studied depot-specific ECM-adipocyte crosstalk using a 3D model with native ECM (decellularized AT). Subcutaneous AT and VAT ASPCs were cultured and differentiated into adipocytes within depot-matched and mis-matched ECM for 14d, followed by ADIPOQ expression analysis. Visceral AT ECM impaired ADIPOQ expression in SAT cells. Our results demonstrate that SAT is more adipogenic than VAT and suggest that divergences between SAT and VAT adipogenesis are partially mediated by the depot-specific ECM microenvironment.

12.
BMC Infect Dis ; 24(1): 663, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956476

RESUMO

BACKGROUND: Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS: The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS: Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS: This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Leucócitos Mononucleares , SARS-CoV-2 , Humanos , COVID-19/sangue , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Idoso , Adulto , Biomarcadores/sangue , Inibidor Tecidual de Metaloproteinase-1/sangue , Inibidor Tecidual de Metaloproteinase-1/genética , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/genética , Índice de Gravidade de Doença , Estudos de Casos e Controles , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética
13.
Sci Rep ; 14(1): 15328, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961237

RESUMO

In the present study, the effect of chloride ions on the oxidative degradation of an alcohol ethoxylate (Brij 30) by persulfate (PS)/UV-C was experimentally explored using Brij 30 aqueous solution (BAS) and a domestic wastewater treatment plant effluent spiked with Brij 30. Brij 30 degradation occurred rapidly during the early stages of oxidation without affecting the water/wastewater matrix. Mineralization of intermediates of Brij 30 degradation markedly influenced by presence of chloride ions. Chloride ions at concentrations up to 50 mg/L accelerated the mineralization through reactions involving reactive chlorine species, which reduced the sink of SO4·- by Cl- scavenging at both initial pH of 6.0 and 3.0 in the case of BAS. The fastest mineralization was achieved under acidic conditions. The WWTP effluent matrix significantly influenced mineralization efficacy of the intermediates. Co-existence of HCO 3 - and Cl- anions accelerated the mineralization of degradation products. Organic matter originating from the WWTP effluent itself had an adverse effect on the mineralization rate. The positive effects of organic and inorganic components present in the WWTP effluent were ranked in the following order of increasing influence: (Organic matter originating from the effluent + Cl- + HCO 3 - ) < (Cl-) < (Cl- + HCO 3 - ).

14.
Artigo em Inglês | MEDLINE | ID: mdl-38963567

RESUMO

Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.

15.
Exp Eye Res ; 246: 109987, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964497

RESUMO

Different types of refractive surgeries often exhibit differences in wound healing responses. The current study investigated post-operative tear protein profiles in subjects who underwent LASIK and SMILE to elucidate global changes to the proteomic profile during the period the patient cornea undergoes healing. In this study, 10 patients underwent LASIK and SMILE surgery with a contralateral paired eye design. Tear samples were collected using Schirmer's strips preoperatively, at 1 month, 3 months and 6 months postoperatively. Quantitative ITRAQ labeled proteomics was performed and the tear protein ratios were normalized to pre-operative protein levels for each subject. Whole proteomics identified 1345 proteins in tears from LASIK and 1584 proteins in SMILE across time points. About 67 proteins were common in LASIK and SMILE tears across all the time points. Wound healing responses were differentially regulated between two refractive surgeries (SMILE and LASIK). The proteins Ceruloplasmin, Clusterin, Serotransferrin were upregulated at 1 month and 3 months and downregulated at 6 months post operatively in LASIK surgery where as in SMILE these were downregulated. Galectin 3 binding protein showed upregulation at 1 month and the levels decreased at 3 months and 6 months postop in LASIK tears whereas the levels increased at 3 months and 6 months post-op in SMILE tears. The levels of proteins that protect from oxidative stress were higher in SMILE as compared to LASIK postoperatively. The extracellular matrix proteins showed an increase in expression at 6 months in SMILE tears and was stabilized at 6 months in LASIK tears post operatively. Different refractive surgeries induce distinct wound healing responses as identified in tears. This study has implications in targeting key proteins for improving the clinical outcome postrefractive surgery.

16.
Sci Rep ; 14(1): 15387, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965339

RESUMO

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Assuntos
Biofilmes , Lactobacillus , Probióticos , Triptaminas , Escherichia coli Uropatogênica , Vagina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Triptaminas/farmacologia , Feminino , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Probióticos/farmacologia , Vagina/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Adulto , Antibacterianos/farmacologia
17.
Aging (Albany NY) ; 162024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950328

RESUMO

The current study aims to develop a new technique for the precise identification of Escherichia coli strains, utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with a long short-term memory (LSTM) neural network. A total of 48 Escherichia coli strains were isolated and cultured on tryptic soy agar medium for 24 hours for the generation of MALDI-TOF MS spectra. Eight hundred MALDI-TOF MS spectra were obtained per strain, resulting in a database of 38,400 spectra. Fifty percent of the data was utilized for LSTM neural network training, with fine-tuned parameters for strain-level identification. The other half served as the test set to assess model performance. Traditional PCA dimension reduction of MALDI-TOF MS spectra indicated 47 out of 48 strains to be unclassifiable. In contrast, the LSTM neural network demonstrated remarkable efficacy. After 20 training epochs, the model achieved a loss value of 0.0524, an accuracy of 0.999, a precision of 0.985, and a recall of 0.982. When tested on the unseen data, the model attained an overall accuracy of 92.24%. The integration of MALDI-TOF MS and LSTM neural network markedly enhances the identification of Escherichia coli strains. This innovative approach offers an effective and accurate tool for MALDI-TOF MS-based strain-level identification, thus expanding the analytical capabilities of microbial diagnostics.

18.
Int Immunopharmacol ; 138: 112567, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38950458

RESUMO

BACKGROUND: Imbalanced intestinal microbiota and damage to the intestinal barrier contribute to the development of necrotizing enterocolitis (NEC). Autoinducer-2 (AI-2) plays a crucial role in repairing intestinal damage and reducing inflammation. OBJECTIVE: This study aimed to investigate the impact of AI-2 on the expression of intestinal zonula occludens-1 (ZO-1) and occludin proteins in NEC. We evaluated its effects in vivo using NEC mice and in vitro using lipopolysaccharide (LPS)-stimulated intestinal cells. METHODS: Pathological changes in the intestines of neonatal mice were assessed using histological staining and scoring. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to determine the optimal conditions for LPS and AI-2 interventions. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the mRNA levels of matrix metalloproteinase-3 (MMP3), protease activated receptor-2 (PAR2), interleukin-1ß (IL-1ß), and IL-6. Protein levels of MMP3, PAR2, ZO-1, and occludin were evaluated using western blot, immunohistochemistry, or immunofluorescence. RESULTS: AI-2 alleviated NEC-induced intestinal damage (P < 0.05) and enhanced the proliferation of damaged IEC-6 cells (P < 0.05). AI-2 intervention reduced the mRNA and protein expressions of MMP3 and PAR2 in intestinal tissue and cells (P < 0.05). Additionally, it increased the protein levels of ZO-1 and occludin (P < 0.05), while reducing IL-1ß and IL-6 mRNA expression (P < 0.05). CONCLUSION: AI-2 intervention enhances the expression of tight junction proteins (ZO-1 and occludin), mitigates intestinal damage in NEC neonatal mice and IEC-6 cells, potentially by modulating PAR2 and MMP3 signaling. AI-2 holds promise as a protective intervention for NEC. AI-2 plays a crucial role in repairing intestinal damage and reducing inflammation.

19.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950560

RESUMO

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

20.
J Dent ; : 105131, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950765

RESUMO

OBJECTIVES: Digital protocols and bioactive materials may reduce complications and improve tooth autotransplantation (ATT) success and survival rates. This prospective study assesses the performance of a fully digital autotransplantation protocol of close-apex molars with the adjunctive application of Enamel Matrix Derivatives (EMD). METHODS: Twelve adult patients with 13 hopeless molar teeth were replaced with autotransplantation of closed apex third molars. Outcomes, including success and survival rates, clinical, endodontic, radiographic, patient-reported outcome measures (PROMs), and digital image assessments, were conducted over a two-year follow-up period. RESULTS: Survival and success rates were 100% and 91.2%, respectively, with no progressive inflammatory or replacement root resorption (ankylosis) except for one tooth presenting radiographic furcation involvement. A significant probing depth reduction of 2.4 ± 2.58 mm and CAL gains of 2.8 ± 3.03 mm were observed in transplanted teeth compared to the hopeless receptor teeth. Radiographic bone levels remained stable throughout the study period (-0.37 ± 0.66 mm), and digital image assessments showed minimal alveolar ridge width changes (-0.32 to -0.7 mm) and gingival margin changes (-0.95 to -1.27 mm) from baseline to last visit. PROMs indicated very high patient satisfaction. CONCLUSION: The use of a digital ATT protocol with adjunctive use of EMD in closed-apex third molars demonstrated promising short-term high success and survival rates. Additionally, this type of therapy adequately preserves the dimensions of the alveolar ridge in the receptor site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA