Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Anticancer Res ; 44(9): 3875-3883, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197897

RESUMO

BACKGROUND/AIM: Glioblastoma is the most aggressive form of brain tumor and has a dismal prognosis; therefore, novel therapeutic approaches based on the mechanisms underlying its aggressive nature are urgently required. A growing body of evidence suggests that neurotransmitters play a key role in modulating the biology of glioblastoma; however, the role of melanocortins remains unclear. MATERIALS AND METHODS: The effects of bremelanotide, a melanocortin receptor agonist, alone or in combination with chemotherapeutic agents, on survivin expression and cell viability were investigated in human glioblastoma cell lines. RESULTS: Bremelanotide reduced survivin expression and induced cell death in glioblastoma cells at concentrations that were not toxic to normal human cells, and both of these effects were canceled in the presence of an antagonist of melanocortin receptors 3 and 4. Bremelanotide-induced cell death was prevented by the forced over-expression of survivin in glioblastoma cells, suggesting that bremelanotide induces glioblastoma cell death by inhibiting the expression of survivin. Bremelanotide also promoted cell death induced by chemotherapeutic agents, such as temozolomide and osimertinib. CONCLUSION: The present results identified melanocortin receptors 3 and 4 as novel and viable therapeutic targets for glioblastoma. Activation of these receptors by bremelanotide may inhibit the expression of survivin, thereby sensitizing glioblastoma cells to cell death.


Assuntos
Glioblastoma , Survivina , alfa-MSH , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Survivina/metabolismo , Survivina/genética , alfa-MSH/farmacologia , alfa-MSH/análogos & derivados , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética , Morte Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Temozolomida/farmacologia , Antineoplásicos/farmacologia
2.
Neuropharmacology ; 257: 110058, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960135

RESUMO

Postnatal hippocampal neurogenesis is essential for learning and memory. Hippocampal neural precursor cells (NPCs) can be induced to proliferate and differentiate into either glial cells or dentate granule cells. Notably, hippocampal neurogenesis decreases dramatically with age, partly due to a reduction in the NPC pool and a decrease in their proliferative activity. Alpha-melanocyte-stimulating hormone (α-MSH) improves learning, memory, neuronal survival and plasticity. Here, we used postnatally-isolated hippocampal NPCs from Wistar rat pups (male and female combined) to determine the role of the melanocortin analog [Nle4, D-Phe7]-α-MSH (NDP-MSH) in proliferation and fate acquisition of NPCs. Incubation of growth-factor deprived NPCs with 10 nM NDP-MSH for 6 days increased the proportion of Ki-67- and 5-bromo-2'-deoxyuridine (BrdU)-positive cells, compared to the control group, and these effects were blocked by the MC4R antagonist JKC-363. NDP-MSH also increased the proportion of glial fibrillar acidic protein (GFAP)/Ki-67, GFAP/sex-determining region Y-box2 (SOX2) and neuroepithelial stem cell protein (NESTIN)/Ki-67-double positive cells (type-1 and type-2 precursors). Finally, NDP-MSH induced peroxisome proliferator-activated receptor (PPAR)-γ protein expression, and co-incubation with the PPAR-γ inhibitor GW9662 prevented the effect of NDP-MSH on NPC proliferation and differentiation. Our results indicate that in vitro activation of MC4R in growth-factor-deprived postnatal hippocampal NPCs induces proliferation and promotes the relative expansion of the type-1 and type-2 NPC pool through a PPAR-γ-dependent mechanism. These results shed new light on the mechanisms underlying the beneficial effects of melanocortins in hippocampal plasticity and provide evidence linking the MC4R and PPAR-γ pathways in modulation of hippocampal NPC proliferation and differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Hipocampo , Células-Tronco Neurais , Neurogênese , Ratos Wistar , Receptor Tipo 4 de Melanocortina , alfa-MSH , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Receptor Tipo 4 de Melanocortina/metabolismo , alfa-MSH/farmacologia , alfa-MSH/análogos & derivados , Feminino , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Masculino , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Ratos , Células Cultivadas , Fatores de Transcrição SOXB1/metabolismo , Animais Recém-Nascidos , Proteína Glial Fibrilar Ácida/metabolismo , PPAR gama/metabolismo
3.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454158

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Assuntos
Remodelação Ventricular , alfa-MSH , Camundongos , Animais , alfa-MSH/farmacologia , Receptores da Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrose
4.
Curr Issues Mol Biol ; 46(2): 1607-1620, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392222

RESUMO

Melanocortin receptor accessory protein 2 (MRAP2) is a membrane protein that binds multiple G protein-coupled receptors (GPCRs) involved in the control of energy homeostasis, including prokineticin receptors. These GPCRs are expressed both centrally and peripherally, and their endogenous ligands are prokineticin 1 (PK1) and prokineticin 2 (PK2). PKRs couple all G-protein subtypes, such as Gαq/11, Gαs, and Gαi, and recruit ß-arrestins upon PK2 stimulation, although the interaction between PKR2 and ß-arrestins does not trigger receptor internalisation. MRAP2 inhibits the anorexigenic effect of PK2 by binding PKR1 and PKR2. The aim of this work was to elucidate the role of MRAP2 in modulating PKR2-induced ß-arrestin-2 recruitment and ß-arrestin-mediated signalling. This study could allow the identification of new specific targets for potential new drugs useful for the treatment of the various pathologies correlated with prokineticin, in particular, obesity.

5.
Mol Neurobiol ; 61(8): 6101-6118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38277117

RESUMO

Spinal cord injury (SCI) is a destructive neurological trauma that induces permanent sensory and motor impairment as well as a deficit in autonomic physiological function. Melanocortin receptor 4 (MC4R) is a G protein-linked receptor that is extensively expressed in the neural system and contributes to inhibiting inflammation, regulating mitochondrial function, and inducing programmed cell death. However, the effect of MC4R in the modulation of oxidative stress and whether this mechanism is related to the role of absent in melanoma 2 (AIM2) in SCI are not confirmed yet. In the current study, we demonstrated that MC4R is significantly increased in the neurons of spinal cords after trauma and oxidative stimulation of cells. Further, activation of MC4R by RO27-3225 effectively improved functional recovery, inhibited AIM2 activation, maintained mitochondrial homeostasis, repressed oxidative stress, and prevented Drp1 translocation to the mitochondria. Meanwhile, treating Drp1 inhibitors would be beneficial in reducing AIM2 activation, and activating AIM2 could abolish the protective effect of MC4R on neuron homeostasis. In conclusion, we demonstrated that MC4R protects against neural injury through a novel process by inhibiting mitochondrial dysfunction, oxidative stress, as well as AIM2 activation, which may serve as an available candidate for SCI therapy.


Assuntos
Mitocôndrias , Estresse Oxidativo , Receptor Tipo 4 de Melanocortina , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Receptor Tipo 4 de Melanocortina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Dinaminas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Peptídeos
6.
J Adv Vet Anim Res ; 10(3): 449-457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969798

RESUMO

Objective: The objective of this study was to associate the 1016G > A variant of the melanocortin-4 receptor gene with lamb's weight, growth, and meat quality in the Colombian hair sheep breed. Materials and Methods: A total of 168 lambs, weights were measured at birth weight (BW), at weaning adjusted weaning weight (AWW), at 6 months [adjusted weight (AW180)], at slaughter adjusted slaughter weight (ASW), daily weight gain preweaning daily gain (preWDG), and postweaning daily gain (postWDG) weaning, and after slaughter, pH, texture, and cook-loss (CL) in the longissimus thoracis et lumborum (LTL) muscle according to the American Meat Science Association methodology. The 1016G > A genotypes were obtained by sequencing. Genotypic and allele frequencies, heterozygosities, and Hardy-Weinberg equilibrium (HWE) were estimated. Using a generalized linear model, the genotype and the allelic substitution effect were associated with the evaluated traits. Results: The heterozygous genotype (0.48) and G allele (0.61) were the most frequent. Heterozygosities were similar (0.47), indicating HWE. The genotype affected the BW (p < 0.05), with a higher value for the GG genotype (2.69 kg). AWW (12.75 kg), AW180 (19.67 kg), and ASW (31.21 kg) weights and daily weight gain (preWDG = 115.41 gm; postWDG = 96.16 gm) were not associated. Average pH, Warner-Bratzler shear force, and CL were 5.75 units, 49.46 N, and 32.02%, with no genotype effect. The G > A substitution only affected BW at -388 gm (p < 0.05). Conclusion: The 1016G > A variant is polymorphic and affects the BW but not other growth traits or the meat quality of the LTL muscle.

7.
J Ocul Pharmacol Ther ; 39(9): 600-610, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677000

RESUMO

Purpose: The melanocortin receptor pan-agonist PL9643, a potential therapy for ocular diseases, was investigated in a phase 2, 12-week study in patients with dry eye disease (DED). Methods: This was a placebo-controlled study evaluating efficacy and safety of thrice-daily PL9643. Placebo (vehicle) was similar to tears. Primary endpoints were intra-patient changes in inferior corneal fluorescein staining and ocular discomfort after 12 weeks. Secondary endpoints were changes in additional DED signs or symptoms. Multiple secondary endpoints were not adjusted for multiplicity. Patients with moderate or severe DED were analyzed in addition to the overall intent-to-treat (ITT) population. Results: In the ITT population (n = 160) the PL9643 group did not demonstrate significant treatment difference versus placebo at week 12/day 85 for the primary endpoints (P > 0.05). In patients with moderate or severe DED (n = 53), PL9643 treatment demonstrated either nominally significant (P < 0.05) or trending (P < 0.1) improvement over placebo in mean change from baseline at week 12/day 85 in several sign endpoints, including fluorescein staining in inferior, superior, corneal sum, and total sum regions; Lissamine Green staining in temporal, nasal, conjunctival sum, and total sum regions; and tear film breakup time. Conjunctival redness also showed (nonsignificant) improvement at week 12/day 85. There were no drug-related adverse events (AEs) and no drug-related discontinuations. Conclusions: PL9643 showed no significant efficacy for the ITT population; however, efficacy results across several signs and symptoms in the subpopulation of moderate to severe DED patients, the low number of ocular AEs, and no tolerability issues suggest that PL9643 shows promise as a therapeutic for DED. Clinical Trial Registration number: NCT04268069.


Assuntos
Síndromes do Olho Seco , Humanos , Soluções Oftálmicas/efeitos adversos , Resultado do Tratamento , Fluoresceína , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/diagnóstico , Córnea , Método Duplo-Cego , Lágrimas
8.
Nutr Res ; 119: 21-32, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716291

RESUMO

Polymorphisms in genes of leptin-melanocortin and insulin pathways have been associated with obesity and type 2 diabetes. We hypothesized that polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory markers and food intake composition in Brazilian subjects. This exploratory pilot study included 358 adult subjects. Clinical, anthropometric, and laboratory data were obtained through interview and access to medical records. The variants IRS1 rs2943634 A˃C, IRS2 rs1865434 C>T, MC3R rs3746619 C>A, and MC4R rs17782313 T>C were analyzed by real-time polymerase chain reaction. Food intake composition was assessed in a group of subjects with obesity (n = 84) before and after a short-term nutritional counseling program (9 weeks). MC4R rs17782313 was associated with increased risk of obesity (P = .034). Multivariate linear regression analysis adjusted by covariates indicated associations of IRS2 rs1865434 with reduced low-density lipoprotein cholesterol and resistin, MC3R rs3746619 with high glycated hemoglobin, and IRS1 rs2943634 and MC4R rs17782313 with increased high-sensitivity C-reactive protein (P < .05). Energy intake and carbohydrate and total fat intakes were reduced after the diet-oriented program (P < .05). Multivariate linear regression analysis showed associations of IRS2 rs1865434 with high basal fiber intake, IRS1 rs2943634 with low postprogram carbohydrate intake, and MC4R rs17782313 with low postprogram total fat and saturated fatty acid intakes (P < .05). Although significant associations did not survive correction for multiple comparisons using the Benjamini-Hochberg method in this exploratory study, polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory status in Brazilian adults. IRS1 and MC4R variants may influence carbohydrate, total fat, and saturated fatty acid intakes in response to a diet-oriented program in subjects with obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Projetos Piloto , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Brasil , Obesidade/genética , Obesidade/metabolismo , Ingestão de Alimentos , Carboidratos , Ácidos Graxos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo
9.
Br J Pharmacol ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085333

RESUMO

BACKGROUND AND PURPOSE: Receptor activity-modifying proteins (RAMPs) and melanocortin receptor accessory proteins (MRAPs) modulate expression and signalling of calcitonin and melanocortin GPCRs. Interactions with other GPCRs have also been reported. The cannabinoid receptors, CB1 and CB2 , and two putative cannabinoid receptors, GPR18 and GPR55, exhibit substantial intracellular expression and there are discrepancies in ligand responsiveness between studies. We investigated whether interactions with RAMPs or MRAPs could explain these phenomena. EXPERIMENTAL APPROACH: Receptors and accessory proteins were co-expressed in HEK-293 cells. Selected receptors were studied at basal expression levels and also with enhanced expression produced by incorporation of a preprolactin signal sequence/peptide (pplss). Cell surface and total expression of receptors and accessory proteins were quantified using immunocytochemistry. Signalling was measured using cAMP (CAMYEL) and G protein dissociation (TRUPATH Gα13 ) biosensors. KEY RESULTS: MRAP2 enhanced surface and total expression of GPR18. Pplss-GPR18 increased detection of cell surface MRAP2. MRAP1α and MRAP2 reduced GPR55 surface and total expression, correlating with reduced constitutive, but not agonist-induced, signalling. GPR55, pplss-CB1 and CB2 reduced detection of MRAP1α at the cell surface. Pplss-CB1 agonist potency was reduced by MRAP2 in Gα13 but not cAMP assays, consistent with MRAP2 reducing pplss-CB1 expression. Some cannabinoid receptors increased RAMP2 or RAMP3 total expression without influencing surface expression. CONCLUSIONS AND IMPLICATIONS: Mutual influences on expression and/or function for specific accessory protein-receptor pairings raises the strong potential for physiological and disease-relevant consequences. Sequestration and/or hetero-oligomerisation of cannabinoid receptors with accessory proteins is a possible novel mechanism for receptor crosstalk.

10.
BMC Endocr Disord ; 23(1): 83, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072742

RESUMO

BACKGROUND: Previous studies have shown that the minor allele (C allele) for melanocortin 4 receptor (MC4R) rs17782313 may be associated with depressed mood. Moreover, dietary patterns have potentially adverse effects on depression. This study investigates the interactions between the MC4R gene variant (rs17782313) and dietary patterns on depression among Iranian obese and overweight women. METHODS: A total of 289 Iranian overweight and obese women, aged 18-50 years, were enrolled in this cross-sectional study. Biochemical, anthropometric, and body composition indices were assessed in all participants. Moreover, MC4R rs17782313, by the restriction fragment length polymorphism (PCR-RFLP) method, and depression, using the 21-item Depression Anxiety Stress Scales (DASS) questionnaire, were assessed. Food intakes were assessed by completing a 147-item semi-quantitative food frequency questionnaire (FFQ). RESULTS: By the use of factor analysis, 2 major dietary patterns were extracted: healthy dietary pattern (HDP) and unhealthy dietary pattern (UDP). Binary logistic analysis showed that individuals with minor allele risk (CC) with high adherence to the unhealthy pattern increased odds for depression (OR: 8.77, 95%CI: -0.86-18.40, P: 0.07), after controlling for confounders. Also, a logical inverse relationship was observed between CT genotype and HDP on depression in the crude and adjusted models (OR: -0.56, 95% CI: -3.69-2.57, P: 0.72) (OR: -4.17, 95% CI: -9.28-0.94, P: 0.11), although this interaction was not statistically significant. CONCLUSION: According to the above findings, adherence to unhealthy food intake pattern increases odds of depression in MC4R risk allele (C allele) carriers. To confirm these findings, more studies are needed in the form of clinical trials and prospective studies with higher sample sizes.


Assuntos
Depressão , Sobrepeso , Humanos , Feminino , Sobrepeso/epidemiologia , Sobrepeso/genética , Estudos Transversais , Estudos Prospectivos , Irã (Geográfico)/epidemiologia , Depressão/etiologia , Depressão/genética , Obesidade/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Índice de Massa Corporal , Receptor Tipo 4 de Melanocortina/genética
11.
J Investig Med High Impact Case Rep ; 11: 23247096231168108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070693

RESUMO

The melanocortin (3 or 4) receptor (MC3/4R) is involved in regulating satiety and body weight. Therefore, pathogenic mutation in MC3/4R is associated with severe obesity, for which bariatric surgery is one of the treatment options. However, there is limited data on whether individuals with MC3/4R mutation will have differential weight response to surgery, especially among the Asian populations-the epi-center of the evolving global obesity epidemic. From our large prospective Obesity-Metabolism & Intervention Cohort Study (OMICS; N = 654, recruited between 2007 and 2022), 5 individuals with pathogenic MC3/4R mutations ("case") were identified using candidate-genes panel next-generation sequencing (Illumina iSeq). These subjects were carefully propensity score-matched (baseline body mass index [BMI], age, sex, ethnicity, proportion with diabetes, type of bariatric surgery) in a 1:4 ratio to other controls. We performed linear mixed model analysis (for repeated measurements) to compare their longitudinal weight trajectories (percentage total weight loss, %TWL) over 12 months. The 5 cases with MC3/4R mutations were 48 ± 11 years, BMI 40.8 ± 11.2 kg/m2, 60% with diabetes, and all males. Their weight at baseline (pre-op), and 6 months and 12 months after surgery were 120 ± 38, 100 ± 31, and 101 ± 30 kg, respectively. Compared with propensity score-matched controls (N = 20), linear mixed model analysis suggested no difference in surgically induced %TWL (ß coefficient = -5.8 ± 3.7, P = .13) over 12 months between the groups. Therefore, we conclude that rare pathogenic MC3/4R mutations do not significantly modify weight change (%TWL) in response to bariatric surgery.


Assuntos
Cirurgia Bariátrica , Trajetória do Peso do Corpo , Masculino , Humanos , Receptor Tipo 3 de Melanocortina/genética , Estudos de Coortes , Estudos Prospectivos , Obesidade/genética , Obesidade/cirurgia , Melanocortinas , Mutação
12.
Adv Biol (Weinh) ; 7(9): e2300035, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37043700

RESUMO

Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.


Assuntos
Hiperfagia , Obesidade , Humanos , Obesidade/genética , Obesidade/metabolismo , Hiperfagia/complicações , Hiperfagia/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética , Ingestão de Energia
13.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36933185

RESUMO

As one of the most obvious phenotypic traits, the coat color of sheep is an ideal model to study the genetic mechanisms underlying coat color varieties of mammals. One distinguishable coat color is the black-headed type, such as the famous black-headed Dorper sheep from Africa and Bayinbuluke sheep from Asia. In this study, we compared the genome sequences of black-headed and all-white sheep to identify causative genes for the black-headed sheep, including black-headed Dorper vs. white-headed Dorper, as well as Bayinbuluke (black-headed) vs. Small-tailed Han (all-white). The most differentiating region between black-headed sheep and all-white sheep was found to harbor a haplotype covering melanocortin receptor 1 (MC1R) gene. The share of this haplotype by the black-headed sheep from Africa and Asia suggested that the convergent change in the MC1R region is likely to determine this unique coat color. Two missense mutations (g. 14251947T > A and g. 14252090G > A) within this haplotype of MC1R gene were found. We further analyzed whole genome sequence data of 460 worldwide sheep with diverse coat colors and confirmed the association between the MC1R haplotype with pigmentation variations. Our study provides novel insights into coat color genetics in sheep and expands our knowledge of the link between MC1R gene and varying pigmentation patterns in sheep.


The diverse colors of sheep not only help to distinguish different breeds but also provide an ideal model to study the genetics underlying mammalian coat color variations. One unique coat color in sheep is the black-headed type, as represented by the famous meat breed Dorper sheep from Africa and Bayinbuluke sheep from Asia. In this study, we compared the genomes of black-headed sheep with all-white sheep in order to identify genes responsible for this distinguishable coat color. By analyzing genomic selection signals and haplotypes, we located MC1R as the most likely causative gene determining the black-headed coat color in sheep. Our study expanded our understanding of the genetic mechanisms of coat color diversities in sheep.


Assuntos
Cor de Cabelo , Receptor Tipo 1 de Melanocortina , Ovinos/genética , Animais , Receptor Tipo 1 de Melanocortina/genética , Fenótipo , Haplótipos , Alelos , Ásia , Mamíferos/genética
14.
Am J Physiol Cell Physiol ; 324(3): C694-C706, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717105

RESUMO

The inward rectifier potassium channel Kir7.1, encoded by the KCNJ13 gene, is a tetramer composed of two-transmembrane domain-spanning monomers, closer in homology to Kir channels associated with potassium transport such as Kir1.1, 1.2, and 1.3. Compared with other channels, Kir7.1 exhibits small unitary conductance and low dependence on external potassium. Kir7.1 channels also show a phosphatidylinositol 4,5-bisphosphate (PIP2) dependence for opening. Accordingly, retinopathy-associated Kir7.1 mutations mapped at the binding site for PIP2 resulted in channel gating defects leading to channelopathies such as snowflake vitreoretinal degeneration and Leber congenital amaurosis in blind patients. Lately, this channel's role in energy homeostasis was reported due to the direct interaction with the melanocortin type 4 receptor (MC4R) in the hypothalamus. As this channel seems to play a multipronged role in potassium homeostasis and neuronal excitability, we will discuss what is predicted from a structural viewpoint and its possible implications for hunger control.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Mutação , Neurônios/metabolismo , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Domínios Proteicos
15.
Anat Rec (Hoboken) ; 306(9): 2388-2399, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35475324

RESUMO

Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.


Assuntos
Ocitocina , Pró-Opiomelanocortina , Camundongos , Animais , Feminino , Pró-Opiomelanocortina/metabolismo , Ocitocina/análise , Ocitocina/metabolismo , Imuno-Histoquímica , Hipotálamo/metabolismo , Vasopressinas/análise , Vasopressinas/genética , Vasopressinas/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Receptores de Melanocortina/metabolismo
16.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499274

RESUMO

The meibomian glands (MGs) within the eyelids produce a lipid-rich secretion that forms the superficial layer of the tear film. Meibomian gland dysfunction (MGD) results in excessive evaporation of the tear film, which is the leading cause of dry eye disease (DED). To develop a research model similar to the physiological situation of MGs, we established a new 3D organotypic slice culture (OSC) of mouse MGs (mMGs) and investigated the effects of melanocortins on exocrine secretion. Tissue viability, lipid production and morphological changes were analyzed during a 21-day cultivation period. Subsequently, the effects on lipid production and gene expression were examined after stimulation with a melanocortin receptor (MCR) agonist, α-melanocyte-stimulating hormone (α-MSH), and/or an MCR antagonist, JNJ-10229570. The cultivation of mMGs OSCs was possible without impairment for at least seven days. Stimulation with the MCR agonists induced lipid production in a dose-dependent manner, whereas this effect was tapered with the simultaneous incubation of the MCR antagonist. The new 3D OSC model is a promising approach to study the (patho-) physiological properties of MG/MGD while reducing animal studies. Therefore, it may accelerate the search for new treatments for MGD/DED and lead to new insights, such as that melanocortins likely stimulate meibum production.


Assuntos
Disfunção da Glândula Tarsal , Glândulas Tarsais , Animais , Camundongos , Lipídeos , Disfunção da Glândula Tarsal/metabolismo , Glândulas Tarsais/metabolismo , Melanocortinas/metabolismo , Lágrimas/metabolismo , Técnicas de Cultura de Tecidos , Sistemas Microfisiológicos
17.
Fish Shellfish Immunol ; 131: 838-846, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334699

RESUMO

The melanocortin system is an ancient neuroendocrine system conserved from teleosts to mammals. The melanocortin system is a set of complex neuroendocrine signaling pathways involved in numerous physiological processes, and particularly associated with the hypothalamic-pituitary-interrenal (HPI) axis response. The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in pigmentation in vertebrates, including fish. In order to assess the immune role of MC1R, this study used a homozygous Mc1r knockout zebrafish. Hence, skin cortisol levels, variations in the blood leucocyte population, as well as the expression levels of immune genes in various tissues of wild-type TU strain (Tübingen, Nüsslein-Volhard Lab) (WT) and homozygous mc1r knockout zebrafish (mc1rK.O.) stimulated with LPS was carried out. Results show that the mc1rK.O. mutant fish produce lower levels of cortisol in mucus and fewer macrophages in blood after exposure to LPS compared to control fish. Regarding the expression of immune genes, mutant fish show a significant increase in the expression of the anti-inflammatory interleukin il10. These results suggest that the mc1rK.O. mutant fish may follow an alternative mechanism among the immune responses, where macrophages seem to have an anti-inflammatory function, attenuating nitric oxide (NO) production and providing an advantage through the mitigation of excessive or strong inflammatory reactions. Nonetheless, a lower number of this cell type could imply a reduced phagocytic potential in the face of an infection. At the same time, lower cortisol levels in the mc1rK.O. mutant fish could be an advantage as for the lower susceptibility to stress and the physiological and metabolic consequences of high cortisol levels.


Assuntos
Receptor Tipo 1 de Melanocortina , Peixe-Zebra , Animais , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Hidrocortisona , Lipopolissacarídeos , Melanocortinas/genética , Imunidade , Anti-Inflamatórios , Mutação , Mamíferos/metabolismo
18.
Neuropeptides ; 96: 102289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155088

RESUMO

RATIONALE: Obesity is a major health problem worldwide. An understanding of the factors that drive feeding behaviors is key to the development of pharmaceuticals to decrease appetite and consumption. Proopiomelanocortin (POMC), the melanocortin peptide precursor, is essential in the regulation of body weight and ingestive behaviors. Deletion of POMC or impairment of melanocortin signaling in the brain results in hyperphagic obesity. Neurons in the hypothalamic arcuate nucleus produce POMC and project to many areas including the nucleus accumbens (NAcc), which is well established in the rewarding and reinforcing effects of both food and drugs of abuse. OBJECTIVE: These studies sought to determine the role of melanocortins in the NAcc on consumption of and motivation to obtain access to standard rodent chow. METHODS: Male, C57BL/6J mice were microinjected bilaterally into the NAcc (100 nl/side) with the melanocortin receptor 3/4 agonist melanotan-II (MT-II; 0.1, 0.3, and 1 nmol), and ingestive behaviors were examined in both home cage and operant food self-administration experiments. In addition, the ability of MT-II in the NAcc to produce aversive properties or affect metabolic rate were tested. RESULTS: MT-II injected into the NAcc significantly decreased consumption in both home cage and operant paradigms, and furthermore decreased appetitive responding to gain access to food. There was no development of conditioned taste avoidance or change in metabolic parameters following anorexic doses of MT-II. CONCLUSIONS: MT-II in the NAcc decreased both the motivation to eat and the amount of food consumed without inducing an aversive state or affecting metabolic rate, suggesting a role for melanocortin signaling in the NAcc that is selective for appetite and satiety without affecting metabolism or producing an aversive state.


Assuntos
Núcleo Accumbens , Peptídeos Cíclicos , Pró-Opiomelanocortina , Receptor Tipo 4 de Melanocortina , alfa-MSH , Animais , Masculino , Camundongos , Melanocortinas/metabolismo , Camundongos Endogâmicos C57BL , Obesidade , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Peptídeos Cíclicos/farmacologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
19.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955479

RESUMO

The melanocortin receptors are G-protein-coupled receptors, which are essential components of the hypothalamic-pituitary-adrenal axis, and they mediate the actions of melanocortins (melanocyte-stimulating hormones: α-MSH, ß-MSH, and γ-MSH) as well as the adrenocorticotropin hormone (ACTH) in skin pigmentation, adrenal steroidogenesis, and stress response. Three melanocortin receptor genes (MC1R, MC2R, and MC5R) contribute to the risk of major depressive disorder (MDD), and one melanocortin receptor gene (MC4R) contributes to the risk of type 2 diabetes (T2D). MDD increases T2D risk in drug-naïve patients; thus, MDD and T2D commonly coexist. The five melanocortin receptor genes might confer risk for both disorders. However, they have never been investigated jointly to evaluate their potential contributing roles in the MDD-T2D comorbidity, specifically within families. In 212 Italian families with T2D and MDD, we tested 11 single nucleotide polymorphisms (SNPs) in the MC1R gene, 9 SNPs in MC2R, 3 SNPs in MC3R, 4 SNPs in MC4R, and 2 SNPs in MC5R. The testing used 2-point parametric linkage and linkage disequilibrium (LD) (i.e., association) analysis with four models (dominant with complete penetrance (D1), dominant with incomplete penetrance (D2), recessive with complete penetrance (R1), and recessive with incomplete penetrance (R2)). We detected significant (p ≤ 0.05) linkage and/or LD (i.e., association) to/with MDD for one SNP in MC2R (rs111734014) and one SNP in MC5R (rs2236700), and to/with T2D for three SNPs in MC1R (rs1805007 and rs201192930, and rs2228479), one SNP in MC2R (rs104894660), two SNPs in MC3R (rs3746619 and rs3827103), and one SNP in MC4R genes (Chr18-60372302). The linkage/LD/association was significant across different linkage patterns and different modes of inheritance. All reported variants are novel in MDD and T2D. This is the first study to report risk variants in MC1R, MC2R, and MC3R genes in T2D. MC2R and MC5R genes are replicated in MDD, with one novel variant each. Within our dataset, only the MC2R gene appears to confer risk for both MDD and T2D, albeit with different risk variants. To further clarity the role of the melanocortin receptor genes in MDD-T2D, these findings should be sought among other ethnicities as well.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Comorbidade , Depressão , Diabetes Mellitus Tipo 2/genética , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo
20.
J Clin Endocrinol Metab ; 107(9): e3699-e3704, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35737586

RESUMO

OBJECTIVE: Patients with pro-opiomelanocortin (POMC) defects generally present with early-onset obesity, hyperphagia, hypopigmentation and adrenocorticotropin (ACTH) deficiency. Rodent models suggest that adequate cleavage of ACTH to α-melanocortin-stimulating hormone (α-MSH) and desacetyl-α-melanocortin-stimulating hormone (d-α-MSH) by prohormone convertase 2 at the KKRR region is required for regulating food intake and energy balance. METHODS: We present 2 sisters with a novel POMC gene variant, leading to an ACTH defect at the prohormone convertase 2 cleavage site, and performed functional studies of this variant. RESULTS: The patients had obesity, hyperphagia and hypocortisolism, with markerly raised levels of ACTH but unaffected pigmentation. Their ACTH has reduced potency to stimulate the melanocortin (MC) 2 receptor, explaining their hypocortisolism. CONCLUSION: The hyperphagia and obesity support evidence that adequate cleavage of ACTH to α-MSH and d-α-MSH is also required in humans for feeding control.


Assuntos
Hormônio Adrenocorticotrópico , Pró-Opiomelanocortina , Insuficiência Adrenal , Humanos , Hiperfagia/genética , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 2 , alfa-MSH
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA