RESUMO
Dehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine hormonal activity is inherent. This unique feature could be beneficial for the medicinal application, especially for the local treatment of various pathologies. At present, the clinical use of dehydroepiandrosterone is limited by its Intrarosa® (Quebec city, QC, Canada) prasterone) 6.5 mg vaginal suppositories for the treatment of vaginal atrophy and dyspareunia, while the dehydroepiandrosterone synthetic derivatives Triplex, BNN 27, and Fluasterone have the investigational status for the treatment of various diseases. Here, we discuss the molecular targets of dehydroepiandrosterone, which open future prospects to expand its indications for use. Dehydroepiandrosterone, as an oral drug, is surmised to have promise in the treatment of osteoporosis, cachexia, and sarcopenia, as does 10% unguent for skin and muscle regeneration. Also, 5-androstenediol, a metabolite of dehydroepiandrosterone, is a promising candidate for the treatment of acute radiation syndrome and as an immunostimulating agent during radiopharmaceutical therapy. The design and synthesis of new 5-androstenediol derivatives with increased bioavailability may lead to the appearance of highly effective cytoprotectors on the pharmaceutical market. The argumentations for new clinical applications of these steroids and novel insights into their mechanisms of action are discussed.
RESUMO
Background: The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods: Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results: The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion: The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcriptoma , Humanos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional , Pulmão/microbiologia , Pulmão/patologia , Boca/microbiologia , Transdução de Sinais , Microbioma Gastrointestinal/genética , Microbiota/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Biological membranes are complex, heterogeneous, and dynamic systems that play roles in the compartmentalization and protection of cells from the environment. It is still a challenge to elucidate kinetics and real-time transport routes for molecules through biological membranes in live cells. Currently, by developing and employing super-resolution microscopy; increasing evidence indicates channels and transporter nano-organization and dynamics within membranes play an important role in these regulatory mechanisms. Here we review recent advances and discuss the major advantages and disadvantages of using super-resolution microscopy to investigate protein organization and transport within plasma membranes.
RESUMO
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Assuntos
Imunidade Celular , Prêmio Nobel , Fagócitos , Animais , Humanos , Células Dendríticas/imunologia , História do Século XX , História do Século XXI , Imunidade Inata , Macrófagos/imunologia , Sistema Fagocitário Mononuclear/imunologia , Prêmio Nobel/história , Fagócitos/imunologiaRESUMO
On-demand engineering of cell membrane receptors to nongenetically intervene in cellular behaviors is still a challenge. Herein, a membraneless enzyme biofuel cell-based self-powered biosensor (EBFC-SPB) was developed for autonomously and precisely releasing Zn2+ to initiate DNAzyme-based reprogramming of cell membrane receptors, which further mediates signal transduction to regulate cellular behaviors. The critical component of EBFC-SPB is a hydrogel film on a biocathode which is prepared using a Fe3+-cross-linked alginate hydrogel film loaded with Zn2+ ions. In the working mode in the presence of glucose/O2, the hydrogel is decomposed due to the reduction of Fe3+ to Fe2+, accompanied by rapid release of Zn2+ to specifically activate a Zn2+-responsive DNAzyme nanodevice on the cell surface, leading to the dimerization of homologous or nonhomologous receptors to promote or inhibit cell proliferation and migration. This EBFC-SPB platform provides a powerful "sensing-actuating-treating" tool for chemically regulating cellular behaviors, which holds great promise in precision biomedicine.
Assuntos
Técnicas Biossensoriais , Zinco , Zinco/química , Zinco/metabolismo , Receptores de Superfície Celular/metabolismo , DNA Catalítico/metabolismo , DNA Catalítico/química , Humanos , Hidrogéis/química , Proliferação de Células/efeitos dos fármacos , Fontes de Energia Bioelétrica , Alginatos/química , Movimento Celular/efeitos dos fármacosRESUMO
Bacteria secrete various iron-chelators (siderophores), which scavenge Fe3+ from the environment, bind it with high affinity, and retrieve it inside the cell. After the Fe3+ uptake, bacteria extract the soluble iron(II) from the siderophore. Ferric siderophores are transported inside the cell via the TonB-dependent receptor system. Importantly, siderophore uptake paths have been also used by sideromycins, natural antibiotics. Our goal is to hijack the transport system for hydroxamate-type siderophores to deliver peptide nucleic acid oligomers into Escherichia coli cells. As siderophore mimics we designed and synthesized linear and cyclic Nδ-acetyl-Nδ-hydroxy-l-ornithine based peptides. Using circular dichroism spectroscopy, we found that iron(III) is coordinated by the linear trimer with hydroxamate groups but not by the cyclic peptide. The internal flexibility of the linear siderophore oxygen atoms and their interactions with Fe3+ were confirmed by all-atom molecular dynamics simulations. Using flow cytometry we found that the designed hydroxamate trimer transports PNA oligomers inside the E. coli cells. Growth recovery assays on various E. coli mutants suggest the pathway of this transport through the FhuE outer-membrane receptor, which is responsible for the uptake of the natural iron chelator, ferric-coprogen. This pathway also involves the FhuD periplasmic binding protein. Docking of the siderophores to the FhuE and FhuD receptor structures showed that binding of the hydroxamate trimer is energetically favorable corroborating the experimentally suggested uptake path. Therefore, this siderophore mimic, as well as its conjugate with PNA, is most probably internalized through the hydroxamate pathway.
RESUMO
Macrophages, as highly phenotypic plastic immune cells, play diverse roles in different pathological conditions. Changing and controlling the phenotypes of macrophages is considered a novel potential therapeutic intervention. Meanwhile, specific transmembrane proteins anchoring on the surface of the macrophage membrane are relatively conserved, supporting its functional properties, such as inflammatory chemotaxis and tumor targeting. Thus, a series of drug delivery systems related to specific macrophage membrane proteins are commonly used to treat chronic inflammatory diseases. This review summarizes macrophages-based strategies for chronic diseases, discusses the regulation of macrophage phenotypes and their polarization processes, and presents how to design and apply the site-specific targeted drug delivery systems in vivo based on the macrophages and their derived membrane receptors. It aims to provide a better understanding of macrophages in immunoregulation and proposes macrophages-based targeted therapeutic approaches for chronic diseases.
Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Fenótipo , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doença CrônicaRESUMO
Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.
Assuntos
Neuroesteroides , Neuroesteroides/metabolismo , Pregnenolona/metabolismo , Esteroides , Encéfalo/metabolismoRESUMO
This work demonstrates that targeting ligand density on nanoparticles can affect interactions between the nanoconstructs and cell membrane receptors. We discovered that when the separation between covalently grafted DNA aptamers on gold nanostars was comparable to the distance between binding sites on a receptor dimer (matched density; MD), nanoconstructs exhibited a higher selectivity for binding to the dimeric form of the protein. Single-particle dynamics of MD nanoconstructs showed slower rotational rates and larger translational footprints on cancer cells expressing more dimeric forms of receptors (dimer+) compared with cells having more monomeric forms (dimer-). In contrast, nanoconstructs with either increased (nonmatched density; NDlow) or decreased ligand spacing (NDhigh) had minimal changes in dynamics on either dimer+ or dimer- cells. Real-time, single-particle analyses can reveal the importance of nanoconstruct ligand density for the selective targeting of membrane receptors in live cells.
Assuntos
Nanopartículas , Ligantes , Membrana Celular/metabolismo , Nanopartículas/química , Polímeros/metabolismo , Sítios de LigaçãoRESUMO
The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.
Assuntos
Antígenos HLA-E , Sinais Direcionadores de Proteínas , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Peptídeos/metabolismo , Receptores de Células Matadoras Naturais/metabolismoRESUMO
Membrane proteins are the targets for most drugs and play essential roles in many life activities in organisms. In recent years, unnatural amino acids (UAAs) encoded by genetic code expansion (GCE) technology have been widely used, which endow proteins with different biochemical properties. A class of photosensitive UAAs has been widely used to study protein structure and function. Combined with photochemical control with high temporal and spatial resolution, these UAAs have shown broad applicability to solve the problems of natural ion channels and receptor biology. This review will focus on several application examples of light-controlled methods to integrate GCE technology to study membrane protein function in recent years. We will summarize the typical research methods utilizing some photosensitive UAAs to provide common strategies and further new ideas for studying protein function and advancing biological processes.
RESUMO
Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the current state of the art, provide a convenient experimental model to study the complex relationship between metabolites of melatonin and the control of pigmentation serving as a future and rationale strategy for targeted therapies of melanoma-affected patients.
Assuntos
Melanoma , Melatonina , Humanos , Melatonina/metabolismo , Melaninas , 5-Metoxitriptamina , Receptor MT2 de Melatonina , Melanoma/metabolismo , Monofenol Mono-OxigenaseRESUMO
Acetylation is an important approach to improve the bioactivity of polysaccharides; however, the mechanisms have not been fully understood. As a key component of longan for exerting health promoting function, longan polysaccharide was hypothesized may achieve elevated immunoregulatory activity after acetylation. A bioactive longan polysaccharide (LP) composed of (1 â 6)-α-d-glucan (84.1 %) and with an average Mw of 9.68 × 104 kDa was acetylated to different degree of substitutions (DS) in this study. Key structural changes responsible for improvement in immunoregulatory activity were identified, and underlying mechanisms were investigated. Acetylated LP (Ac-LP) with DS 0.37, 0.78 and 0.92 were obtained. Structural characterization identified the substitution of acetyl groups occurs at O-6 positions of t-Glc non-selectively, while the backbone structure was not apparently changed. This resulted in increased expression of cytokines (IL-10, IL-6 and TNF-α) and ROS production in RAW264.7 macrophages, indicating improved immune activity which is positively related to the DS of Ac-LP. This is attribute to additional cellular receptors for Ac-LP (CD14 and Dectin-1) apart from receptors for LP (TLR4 and Ca2+ receptors), as well as the relative higher protein expression of TLR4-MyD88 signaling pathways. These results would provide guidance for the utilization of acetylated polysaccharides with improved immunoactivity.
RESUMO
BACKGROUND: Labeling efficiency is a crucial parameter in fluorescence applications, especially when studying biomolecular interactions. Current approaches for estimating the yield of fluorescent labeling have critical drawbacks that usually lead them to be inaccurate or not quantitative. RESULTS: We present a method to quantify fluorescent-labeling efficiency that addresses the critical issues marring existing approaches. The method operates in the same conditions of the target experiments by exploiting a ratiometric evaluation with two fluorophores used in sequential reactions. We show the ability of the protocol to extract reliable quantification for different fluorescent probes, reagents concentrations, and reaction timing and to optimize labeling performance. As paradigm, we consider the labeling of the membrane-receptor TrkA through 4'-phosphopantetheinyl transferase Sfp in living cells, visualizing the results by TIRF microscopy. This investigation allows us to find conditions for demanding single and multi-color single-molecule studies requiring high degrees of labeling. CONCLUSIONS: The developed method allows the quantitative determination and the optimization of staining efficiency in any labeling strategy based on stable reactions.
Assuntos
Técnicas de Cultura de Células , Corantes Fluorescentes , Microscopia , Coloração e RotulagemRESUMO
Receptor dimerisation and higher order oligomerisation regulates signalling by a wide variety of transmembrane receptors. We discuss how agent-based modelling (ABM) combined with advanced microscopy and structural studies can provide new insights into the regulation of clustering, including spatial considerations, revealing novel targets for therapeutic intervention.
Assuntos
Receptores de Superfície Celular , Transdução de Sinais , Receptores de Superfície Celular/químicaRESUMO
The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).
Assuntos
Anticorpos de Domínio Único , Ligantes , Proteínas de Membrana , Corantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismoRESUMO
The angiotensin-converting enzyme 2 (ACE2) has been identified as entry receptor on cells enabling binding and infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via trimeric spike (S) proteins protruding from the viral surface. It has been suggested that trimeric S proteins preferably bind to plasma membrane areas with high concentrations of possibly multimeric ACE2 receptors to achieve a higher binding and infection efficiency. Here we used direct stochastic optical reconstruction microscopy (dSTORM) in combination with different labeling approaches to visualize the distribution and quantify the expression of ACE2 on different cells. Our results reveal that endogenous ACE2 receptors are present as monomers in the plasma membrane with densities of only 1-2 receptors µm-2 . In addition, binding of trimeric S proteins does not induce the formation of ACE2 oligomers in the plasma membrane. Supported by infection studies using vesicular stomatitis virus (VSV) particles bearing S proteins our data demonstrate that a single S protein interaction per virus particle with a monomeric ACE2 receptor is sufficient for infection, which provides SARS-CoV-2 a high infectivity.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas de Transporte/metabolismo , Ligação ProteicaRESUMO
The signaling of membrane receptors is modified in obesity characterized by low-grade inflammation. The obesity-resistant state of organisms is poorly understood. We analyzed the generation of reactive oxygen species (ROS) initiated though membrane formyl peptide receptors (Fpr1, Fpr2) in bone-marrow granulocytes of obesity-resistant mice (ORM). A chemiluminescence assay was used to assess NADPH-oxidase-related intensity of ROS generation. ORM were chosen from animals that received high-fat diets and had metric body parameters as controls (standard diet). High spontaneous ROS production was observed in ORM cells. The EC50 for responses to bacterial or mitochondrial peptide N-formyl-MLF was higher in ORM with and without inflammation vs. the same control groups, indicating an insignificant role of high-affinity Fpr1. Increased responses to synthetic peptide WKYMVM (Fpr2 agonist) were observed in controls with acute inflammation, but they were similar in other groups. Fpr2 was possibly partially inactivated in ORM owing to the inflammatory state. Weakened Fpr1 and Fpr2 signaling via MAPKs was revealed in ORM using specific inhibitors for p38, ERK1/2, and JNK. P38 signaling via Fpr2 was lower in ORM with inflammation. Thus, a high-fat diet modified FPRs' role and suppressed MAPK signaling in NADPH-oxidase regulation in ORM. This result can be useful to understand the immunological features of obesity resistance.
RESUMO
GCR1 has been proposed as a plant analogue to animal G-protein-coupled receptors that can promote or regulate several physiological processes by binding different phytohormones. For instance, abscisic acid (ABA) and gibberellin A1 (GA1) have been shown to promote or regulate germination and flowering, root elongation, dormancy, and biotic and abiotic stresses, among others. They may act through binding to GCR1, which would put GCR1 at the heart of key signaling processes of agronomic importance. Unfortunately, this GPCR function has yet to be fully validated due to the lack of an X-ray or cryo-EM 3D atomistic structure for GCR1. Here, we used the primary sequence data from Arabidopsis thaliana and the GEnSeMBLE complete sampling method to examine 13 trillion possible packings of the 7 transmembrane helical domains corresponding to GCR1 to downselect an ensemble of 25 configurations likely to be accessible to the binding of ABA or GA1. We then predicted the best binding sites and energies for both phytohormones to the best GCR1 configurations. To provide the basis for the experimental validation of our predicted ligand-GCR1 structures, we identify several mutations that should improve or weaken the interactions. Such validations could help establish the physiological role of GCR1 in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismoRESUMO
A surface-enhanced Raman scattering (SERS)/fluorescence dual-mode nanoprobe was proposed to assess anti-diabetic drug actions from the expression level of the epidermal growth factor receptor (EGFR), which is a significant biomarker of breast cancers. The nanoprobe has a raspberry shape, prepared by coating a dye-doped silica nanosphere with a mass of SERS tags, which gives high gains in fluorescence imaging and SERS measurement. The in situ detection of EGFR on the cell membrane surfaces after drug actions was achieved by using this nanoprobe, and the detection results agree with the enzyme-linked immunosorbent assay (ELISA) kit. Our study suggests that rosiglitazone hydrochloride (RH) may be a potential drug for diabetic patients with breast cancer, while the anti-cancer effect of metformin hydrochloride (MH) is debatable since MH slightly promotes the EGFR expression of MCF-7 cells in this study. This sensing platform endows more feasibility for highly sensitive and accurate feedback of pesticide effects at the membrane protein level.