Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.006
Filtrar
1.
J Environ Sci (China) ; 148: 420-436, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095177

RESUMO

Mercury (Hg) pollution has been a global concern in recent decades, posing a significant threat to entire ecosystems and human health due to its cumulative toxicity, persistence, and transport in the atmosphere. The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants. Besides the advantages of good Hg° capture performance and low secondary pollution of the mineral selenium compounds, the most noteworthy is the relatively low regeneration temperature, allowing adsorbent regeneration with low energy consumption, thus reducing the utilization cost and enabling recovery of mercury resources. This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal, introduces in detail the different types of mineral selenium compounds studied in the field of mercury removal, reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components, such as reaction temperature, air velocity, and other factors, and summarizes the adsorption mechanism of different fugitive forms of selenium species. Based on the current research progress, future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg0 and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg0 removal in practical industrial applications. In addition, it remains a challenge to distinguish the oxidation and adsorption of Hg0 quantitatively.


Assuntos
Poluentes Atmosféricos , Mercúrio , Mercúrio/química , Adsorção , Poluentes Atmosféricos/química , Selênio/química , Gases/química , Compostos de Selênio/química
2.
J Environ Sci (China) ; 148: 683-690, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095199

RESUMO

Mercury (Hg), especially methylmercury (MeHg), accumulation in rice grain due to rice paddy possessing conditions conducive to Hg methylation has led to human Hg exposure through consumption of rice-based daily meals. In addition to being a food staple, rice is widely used as a raw material to produce a vast variety of processed food products. Little is known about Hg levels in snacking rice-food products and potential Hg exposure from consumption of them, besides previous studies on infant rice cereals. Aiming to provide complementary information for a more complete assessment on Hg exposure risk originated from Hg-containing rice, this study determined total Hg (THg) and MeHg levels in 195 rice-containing and rice-free processed food products covering all major types of snack foods marketed in China and the estimated daily intake (EDI) of dietary Hg from the consumption of these foods. The results clearly showed THg and MeHg contents in rice-containing foods were significantly higher than rice-free products, suggesting the transfer of Hg and MeHg from the rice to the end products, even after manufacturing processes. Moreover, significant positive correlations were observed between THg, MeHg, or MeHg/THg ratio and rice content for samples containing multiple grains as ingredients, further indicating the deciding role of rice for Hg levels in the end food products. Although the EDI of THg and MeHg via rice-based food products were relatively low compared to the reference dose, it should be considered these snacking food products would contribute additive Hg intake outside of the daily regular meals.


Assuntos
Exposição Dietética , Contaminação de Alimentos , Mercúrio , Compostos de Metilmercúrio , Oryza , Oryza/química , Mercúrio/análise , Contaminação de Alimentos/análise , China , Compostos de Metilmercúrio/análise , Exposição Dietética/análise , Exposição Dietética/estatística & dados numéricos , Humanos , Medição de Risco
3.
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095204

RESUMO

In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.


Assuntos
Poluentes Atmosféricos , Mercúrio , Óxidos , Tolueno , Tolueno/química , Óxidos/química , Poluentes Atmosféricos/química , Mercúrio/química , Coque , Catálise , Cromo/química , Adsorção , Manganês/química , Compostos de Manganês/química , Modelos Químicos
4.
J Environ Sci (China) ; 147: 392-403, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003057

RESUMO

This study used steel slag, fly ash, and metakaolin as raw materials (SFM materials) to create silica-alumina-based geopolymers that can solidify Hg2+ when activated with sodium-based water glass. The experiments began with a triangular lattice point mixing design experiment, and the results were fitted, analyzed, and predicted. The optimum SFM material mass ratio was found to be 70% steel slag, 25% fly ash, and 5% metakaolin. The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg2+of geosynthetics with different modulus. The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings. The inclusion of 50% SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%. The mercury concentration of herbaceous plant samples was also reduced by 78%. It indicates that the SFM material can effectively attenuate the migration transformation of mercury. Finally, characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg2+ solidification by geopolymers generated by SFM materials. The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation, chemical bonding s, surface adsorption of Hg2+ and its precipitates by the geopolymer, and physical encapsulation.


Assuntos
Mercúrio , Mercúrio/química , Mercúrio/análise , Polímeros/química , Poluentes do Solo/química , Poluentes do Solo/análise , Mineração , Cinza de Carvão/química , Modelos Químicos
5.
Adv Mater ; : e2408466, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295483

RESUMO

This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine. Each section examines the intricacies of liquid metal integration, elucidating their contributions to technological advancements and societal progress. Moreover, the review critically appraises the challenges and prospects inherent in liquid metal applications, addressing issues of recycling, corrosion management, device stability, economic feasibility, translational hurdles, and market dynamics. By delving into these complexities, the paper advances scholarly understanding and offers actionable insights for researchers, engineers, and policymakers. It aims to catalyze innovation, foster interdisciplinary collaboration, and promote liquid metal-enabled solutions for societal needs. Through its comprehensive analysis and forward-looking perspective, this review serves as a guide for navigating the landscape of liquid metal applications, bridging historical legacies with contemporary challenges, and highlighting the transformative potential of liquid metals in shaping future technologies.

6.
Chemosphere ; 365: 143349, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278331

RESUMO

Thermal desorption is a well-assessed technique to speciate mercury (Hg) in soils and sediments. However, the effects related to the different matrices are still not properly assessed. In this study, thermal desorption was applied to Hg-free calcite mixed with Hg standard and soils rich in carbonate and silicate minerals, as well as organic matter. Hg0, HgCl2, HgO, α-HgS, ß-HgS and organo-mercuric compounds were recognized, pointing out that the soil matrix operates notable differences in terms of breakdown temperatures of the Hg-compounds and suggesting that the mineralogical composition of soil has to be investigated before applying the thermal desorption technique. Furthermore, the presence of Hg0 was carefully evaluated since, as already observed, it forms Hg2+, which increases mercury mobility in the pedological cover with important consequences for those soils contaminated and located close to decommissioned or active mining areas and/or industrial sites (e.g. chloro-alkali industries). Experimental runs were thus carried out by using carbonate-, silicate- and organic-rich soils doped with liquid Hg. It was observed that Hg0 tends to be oxidized to form Hg+ and then Hg2+ as a function of soil matrix and reaction time. Surprisingly, the oxidation rate is rather fast, since after 42 days the initial content of Hg0 is halved, thus following an exponential decay. This implies that in Hg0-polluted areas, the fate of the resulting Hg2+ can be that to: i) be adsorbed by organic matter and/or Fe-Mn-Al oxides and/or ii) feed shallow aquifers. This study is a further step ahead to understand the behavior of Hg in contaminated soils from industrial and mining areas where liquid Hg is occurring in different soil matrices and may provide useful indications for remediation operations.

7.
J Hazard Mater ; 479: 135694, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217944

RESUMO

Mercury ion (Hg2+) is considered a harmful neurotoxin, and real-time monitoring of Hg2+ concentrations in environmental and biological samples is critical. Fluorescent probes are a rapidly emerging visualization tool owing to their simple design and good selectivity. Herein, a novel fluorescence (FL) probe 2-(4-((6-((quinolin-8-yloxy)methyl)pyridin-2-yl)methyl)piperazin-1-yl)anthracene-9,10-dione (QPPA) is designed using piperazine as a linker between the anthraquinone group, which serves as a fluorophore, and N4O as the Hg2+ ligand. The probe exhibits FL "turn-on" sensing of Hg2+ because the complex inhibits the photo-induced electron transfer (PET) process. Moreover, QPPA can overcome the invasion by other possible cations, resulting in a clear color change from orange to colorless with the addition Hg2+. The chelation of QPPA with Hg2+ in a 1:1 ratio. Subsequently, the theoretically determined binding sites of the ligand to Hg2+ are validated through 1H NMR titration. The in situQPPA-Hg2+ complex can be subjected to Hg2+ extraction following the introduction of S2- owing to its robust binding capacity. The exceptional limit of detection values for Hg2+ and S2- are obtained as 63.0 and 79.1 nM (S/N = 3), respectively. Moreover, QPPA can display bright red FL in the presence of Hg2+ in different biological specimens such as HeLa cells, zebrafish, onion root tip tissues, and water flea Daphnia carinata, further providing an effective strategy for environmental monitoring and bioimaging of Hg2+ in living organisms.


Assuntos
Antraquinonas , Colorimetria , Corantes Fluorescentes , Mercúrio , Mercúrio/análise , Mercúrio/química , Antraquinonas/química , Animais , Corantes Fluorescentes/química , Colorimetria/métodos , Peixe-Zebra , Humanos , Daphnia , Fluorometria/métodos , Células HeLa , Imagem Óptica , Limite de Detecção
8.
J Hazard Mater ; 479: 135664, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39226684

RESUMO

Soil acts as storage for many toxic substances, including mercury and its compounds. However, in addition to its storage function, soil can also be a source of many substances to the aquatic environment. Methylmercury (MeHg) is one of the most toxic form of mercury (Hg) present in the environment. Some studies consider Poland to be one of the major emitters of Hg into both the atmosphere and the Baltic Sea. The purpose of the study was to identify factors affecting the formation and retention of MeHg in the soil as well as it remobilization to the river. Fifteen soil core samples with a length of 200 cm were collected during the fall/winter of 2021-2022. The factors responsible for the inflow and formation of MeHg were precipitation, distance from the riverbank, soil moisture and age of organic matter. MeHg can be transported to topsoil with precipitation. An increase in MeHg concentration was also observed in moist soils located in the vicinity of riverbank. MeHg concentration was lower in soils with degraded organic matter than with fresh organic matter.

9.
Sci Total Environ ; 954: 176286, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278490

RESUMO

Understanding the sources of mercury (Hg) in coal is crucial for understanding the natural Hg cycle in the Earth's system, as coal is a natural Hg reservoir. We conducted analyses on the mass-dependent fractionation (MDF), reported as δ202Hg, and mass-independent fractionation (MIF), reported as Δ199Hg, of Hg isotopes among individual Hg species and total Hg (THg) in Chinese coal samples. This data, supplemented by a review of prior research, allowed us to discern the varying trend of THg isotope fractionation with coal THg content. The Hg isotopic composition among identified Hg species in coal manifests notable disparities, with species exhibiting higher thermal stability tending to have heavier δ202Hg values, whereas HgS species typically display the most negative Δ199Hg values. The sources of Hg in coal are predominantly attributed to Hg accumulation from the original plant material and subsequent input from hydrothermal activity. Hg infiltrates peat swamps via vegetation debris, thus acquiring a negative Δ199Hg isotopic signature. Large-scale lithospheric Hg recycling via plate tectonics facilitates the transfer of Hg with a positive Δ199Hg from marine reservoirs to the deep crust. The later-stage hydrothermal input of Hg with a positive Δ199Hg enhances coal Hg content. This process has resulted in an upward trend of Δ199Hg values corresponding with the increase in coal THg content, ultimately leading to near-zero Δ199Hg in high-Hg coals. Coal Hg reservoirs are affected by large-scale natural Hg cycling, which involves the exchange of Hg between continents and seas.

10.
Sci Total Environ ; 954: 176324, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299313

RESUMO

Metal pollution is a global environmental issue with adverse biological effects on wildlife. Long-term studies that span declines in metal emissions due to regulation, resulting in varying levels of environmental contamination, are therefore well-suited to investigate effects of toxic metals, while also facilitating robust analysis by incorporating fluctuating environmental conditions and food availability. Here, we examined a resident population of tawny owls in Norway between 1986 and 2019. Tail feathers from females were collected annually, resulting in over 1000 feathers. Each feather served as an archive of local environmental conditions during molt, including the presence of metals, and their dietary ecology, proxied by stable isotopes of nitrogen (δ15N) and carbon (δ13C), as well as corticosterone levels (CORTf), the primary avian glucocorticoid and a measure of physiological stress. We analyzed feathers to examine how exposure to toxic metal(loid)s (Al, As, Cd, Hg, and Pb) and variability in dietary proxies modulate CORTf. Using structural equation modelling, we found that increased Al concentrations and δ15N values, linked directly to increased CORTf. In opposite, we found that increased Hg concentrations and δ13C related to decreased CORTf concentrations. δ15N was indirectly linked to CORTf through Al and Hg, while δ13C was indirectly linked to CORTf through Hg. This supports our hypothesis that metal exposure and dietary ecology may individually or jointly influence physiological stress. Notably, our results suggest that dietary ecology has the potential to mediate the impact of metals on CORTf, highlighting the importance of considering multiple variables, direct and indirect effects, when assessing stress in wildlife. In conclusion, feathers represent an excellent non-destructive biomonitoring strategy in avian wildlife, providing valuable insights not easily accessible using other methods. Further research is warranted to fully comprehend implications of alterations in CORTf on the tawny owl's health and fitness.

11.
Environ Pollut ; 362: 125011, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313123

RESUMO

There is an elevated presence of mercury (Hg) in the biosphere because of anthropogenic activities. The resulting damage to ecosystems and human health increases dramatically when microorganisms produce highly toxic methylmercury (MeHg). Total Hg (THg), MeHg and ancillary water chemistry were measured in two connected lakes, separated by a short stream stretch, before (1996, 1998 and 2003) and after (2007, 2009 and 2010) the removal of Hg-polluted pulp fiber sediment. Over the study period, there was a decrease in sulfate in the surface water of both lakes, presumably because of declining atmospheric sulfate deposition. Together, the reductions in OM, sulfate, and Hg, resulted in decreased MeHg concentrations as well as decreased MeHg:THg ratios in the bottom water overlying the sediment. There was also a reduction in zooplankton MeHg and fish total Hg in both lakes. Multiple regressions, using the bottom water data before and after remediation from both lakes, indicated that both the yearly maximum MeHg concentration [MeHgmax] and MeHgmax:THg correlated positively with the simultaneously measured sulfate deficit (a proxy for microbial sulfate reduction) and inorganic Hg concentration (IHg = THg - MeHg). This may suggest that the removal of Hg and the decreased sulfate reduction not only led to a decrease in available Hg substrate for methylation but also disfavored the Hg methylation process. As opposed to sulfate deficit, other measurements reflecting heterotrophic microbial activity such as inorganic carbon (IC), ammonium (NH4+), and iron (Fe) did not show significant correlations with MeHg or MeHg:THg when the data from both lakes were combined.

12.
Vet World ; 17(8): 1855-1863, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39328457

RESUMO

Background and Aim: Individuals exposed to heavy metals are known to experience physiological and biochemical changes, which raise questions regarding possible health effects. In our earlier research, significant concentrations of vanadium (V), mercury (Hg), cadmium (Cd), and arsenic (As) were found in food and medical packaging materials. This study aimed to evaluate the cognitive, physiological, and biomarker effects of select heavy metal exposure in Wistar rats. Materials and Methods: Over a 13-week period, five groups of rats (six rats per group, with both males and females) were assessed to study the effects of oral exposure to V, Hg, Cd, and As. The study focused on evaluating physiological, cognitive, and biochemical markers, with the results compared to those of a control group. Results: Comparing all groups of rats treated with heavy metals, the study revealed significant deficits in learning and spatial orientation (water maze test); rats treated with V, Cd, and Hg showed signs of depression. Rats treated with As also showed signs of hyperactivity, which may indicate a connection to attention-deficit hyperactivity disorder (rat tail suspension test). The groups exposed to different heavy metals varied in their physiological (water and food intake, urine and feces output) and biochemical responses (enzyme-linked immunosorbent assay, prostate-specific antigen, T3, T4, thyroid-stimulating hormone, carcinoembryonic antigen, and blood glucose analysis), with Hg exhibiting the strongest impacts. Rats given Hg showed signs of hypothyroidism, such as increased food intake and weight gain. Conclusion: This study clarifies the complex relationships between exposure to heavy metals and various biological systems, shedding light on their potential health impacts. The findings provide insight into the effects of heavy metals on neural and thyroid tissues, as well as their propensity to cause cellular dedifferentiation. However, the study has certain limitations, such as the relatively short duration of exposure and the use of only a few selected biomarkers. Future research should focus on long-term exposure studies, incorporate a broader range of biomarkers, and explore the underlying mechanisms at a molecular level to better understand the full spectrum of health risks associated with heavy metal exposure.

13.
Food Chem ; 463(Pt 3): 141375, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39332369

RESUMO

Mercury ions (Hg2+) are highly toxic heavy metals that are commonly found in natural environments. Owning to their non-biodegradability and accumulation in the food chain, the precise detection of trace amounts of Hg2+ is essential for preventing chronic accumulation and ensuring food safety. In this study, we present a dual-mode paper sensor for simultaneous colorimetric and Surface-Enhanced Raman Spectroscopy (SERS) detection of Hg2+ in tea, achieving ultrasensitive, rapid, and on-site screening. 4-Mercaptopyridine (4-MPY) was effectively chemisorbed onto the gold nanoparticles (AuNPs), acting as a signal probe for colorimetric methods. Moreover, it can produce plasmonic hot spots for SERS by interacting with the pyridine ring. To enhance the signal intensity of both colorimetry and SERS, a silver shell is in-situ grown on the surface of AuNPs captured on the paper sensor by reduction of Ag+, achieving signal amplification. The visual limit of detection (LOD) for the colorimetric biosensor is 2.5 pM, while the LOD of SERS is 0.48 pM with this dual-mode paper sensor. The sensitivity of both the colorimetric method and SERS was improved by approximately 200 and 500 times, respectively, with the designed signal amplification strategy. The system allows for multiple parallel screening of the same sample, ensuring accurate results without any false-positive or false-negative. This study provides a valuable platform for the accurate detection of various other heavy metal ions and provides effective strategies for improving the performance of colorimetric methods.

14.
Sci Total Environ ; : 176458, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332726

RESUMO

Climate warming has accelerated glacier melting, releasing legacy pollutants such as mercury (Hg) into aquatic ecosystems. While the relationship between Hg in glacier meltwater runoff, total suspended particles (TSP), and runoff discharges has been established, the underlying inter-relationships and governing factors remain poorly understood. To address this knowledge gap, we conducted a continuous fixed-point sampling at Laohugou No. 12 Glacier in the northern Tibetan Plateau from June to September 2019 spanning the entire glacier ablation season. Our study analyzed the variations of Hg partition in the meltwater runoff and conducted a comprehensive co-analysis of Hg with TSP and discharge to uncover the dominant factors of Hg input into meltwater runoff. The concentration of total Hg (THg) in the meltwater runoff ranged from 0.7 to 112.6 ng/L, with an average concentration of 26.6 ±â€¯25.1 ng/L. Particulate Hg (PHg) was found to be the predominant partition, while dissolved Hg (DHg) exhibited a notable increase in June and September. THg concentration significantly correlated with TSP concentration (r = 0.94, P < 0.01), exceeding the correlation with discharge (r = 0.76, P < 0.01) during the entire ablation period. However, further examination during varying hydrological periods revealed differing associations among Hg speciation concentrations, TSP concentration, and discharge. During the rising limb of the hydrograph, THg (r = 0.86, P < 0.01) and PHg concentrations (r = 0.87, P < 0.01) exhibited a significant correlation with TSP concentration, primarily driven by TSP, implying that Hg availability determines the Hg input into meltwater runoff. Conversely, during the recession limb of the hydrograph, THg concentration was primarily influenced by discharge (r = 0.85, P < 0.01). PHg (r = 0.84, P < 0.01) and TSP (r = 0.97, P < 0.01) concentrations were strongly influenced by discharge, indicating that hydraulic action is the dominant factor affecting Hg input. Our study elucidated the impact of glacier hydrological processes on Hg transport, revealing the dominant factors of Hg input during different hydrological periods. This contributes to a deeper understanding of Hg input into meltwater runoff and improves predictions of Hg export through glacier melt in high mountain regions.

15.
Sci Total Environ ; : 176466, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332738

RESUMO

Mercury (Hg) is a bioavailable and toxic element with concentrations that are persistently high or rising in some Arctic and subarctic lakes despite reduced atmospheric emissions in North America. This is due to rising Hg emissions to the atmosphere outside of North America, enhanced sequestration of Hg to sediments by climate-mediated increases in primary production, and ongoing release of Hg from terrestrial reservoirs. To evaluate the influence of organic matter and other parameters on Hg accumulation in northern lakes, near-surface sediments were sampled from 60 lakes across a boreal to shrub tundra gradient in the central Northwest Territories, Canada. The organic matter of the lake sediments, assessed using programmed pyrolysis and petrology, is composed of a mixture of terrestrial, aquatic, and inert organic matter. The proportion of algal-derived organic matter is higher in sediments of lakes below treeline relative to shrub tundra sites. Total sedimentary Hg concentration is correlated to all organic matter constituents but is unrelated to latitude or lake position below or above treeline. The concentrations of Ag, Ca, P, S, U, Ti, Y, S, Cd, and Zn are also strong predictors of total sedimentary Hg concentration, indicating input from a common geogenic source and/or common sequestration pathways associated with organic matter. Catchment area is a strong negative predictor of total sedimentary Hg concentration, particularly in lakes above treeline, possibly due to retention capacity of Hg and other elements in local sinks. This research highlights the complexity of controls on Hg sequestration in sediment and shows that while organic matter is a strong predictor of total sedimentary Hg concentration on a landscape scale and across extreme gradients in climate and associated vegetation and permafrost, other factors such as catchment area and sources from mineralized bedrock are also important.

16.
Ecotoxicol Environ Saf ; 284: 116993, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39260217

RESUMO

Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δ202Hg (-1.86 % to -0.32 %; mean = -1.17 ± 0.65 %, 2 SD, n = 34) and small variations in Δ199Hg (-0.27 % to 0.04 %; mean = -0.13 ± 0.14 %, 2 SD, n = 34) and Δ200Hg (-0.20 % to 0.06 %; mean = -0.05 ± 0.13 %, 2 SD, n = 34). During the sampling period, GEM was negatively correlated with gaseous oxidized mercury (GOM). However, the GOM/GEM ratio was not -1, suggesting that GEM oxidation and subsequent scavenging occurred previously. The δ202Hg isotopic compositions of TGM at MLO were different from those of reported values of high-altitude mountains; the δ202Hg of TGM at MLO was lower than the isotopic ratios that were obtained from other mountain regions. The unique atmospheric conditions at Mauna Loa, with (upslope winds during the day and downslope winds at night, likely result in the) possibly mixing of GEMs from terrestrial (and possibly oceanic GEM emission) sources with and tropospheric sources, influencing and affect the isotopic composition. During the late summer to early fall (September 14-28), negative correlations were found between relative humidity and GOM and between particle number concentrations and Δ199Hg, indicating the gas-to-particle partitioning of the atmospheric mercury during this period. This study will improve our understanding on mercury dynamics of marine origin and high altitudes and shed light on its complex interactions with environmental factors.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Havaí , Atmosfera/química , Isótopos de Mercúrio/análise
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125135, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39299073

RESUMO

Mercury ion (Hg2+) pose a significant hazard to the natural environment. Conventional techniques like Inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, among others, pose some disadvantages as they demand a lot of money, need trained employees, and cannot provide on-site detection in real-time. A smartphone sensing technique based on silicon quantum dots (Si-QDs) was presented to detect Hg2+ in the environment without the usage of sophisticated equipment. Meanwhile, the technology was built by utilizing a smartphone to capture gray values of fluorescent images of the Si-QDs-Hg2+ system. Microwave-assisted Si-QDs with tiny particle size, high fluorescence, and good optical stability were created. The fluorescence of the Si-QDs was gradually quenched by raising the Hg2+ concentration from 0.5 µmol/L to 5.0 µmol/L for fluorescent detection with a detection limit of 28 nmol/L. The 94.8-97.1 % recovery demonstrated the viability of the Si-QDs approach for detecting Hg2+. Meanwhile, a smartphone sensing strategy was built by recording the gray value of the fluorescent images of the Si-QDs-Hg2+ systems using a smartphone, and the detection limit of the established approach was 3 nmol/L. The accuracy and reliability of the smartphone strategy were verified with the recovery rates of 80.3-92.5 % in tap water and 87.6-109 % in river water. Electron transfer quenching mechanism between Si-QDs and Hg2+ was evidenced by ultraviolet-visible spectroscopy, fluorescent decay curves, cyclic voltammetry, and Zeta potential. Finally, the suggested approach was used to detect Hg2+ in water samples from various environments.

18.
Mar Pollut Bull ; 208: 117008, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299188

RESUMO

Mercury pollution from ongoing crude oil refining and waste disposal activities threatens aquatic ecosystems and human health in the Niger Delta. Mercury monitoring exercise in this region is challenging due to the high cost of traditional instruments and the complexity of marine samples. This research presents a novel analytical method using differential pulse anodic stripping voltammetry (DPASV) with a glassy carbon electrode (GCE) to determine mercury levels in sea sponges from the Niger Delta. Using a 2.36 M HCl + 2.4 M NaCl supporting electrolyte, -0.6 V deposition potential, and 300 s deposition time, average mercury levels were found to be 0.98 mg kg-1, 0.63 mg kg-1 and 0.42 mg kg-1 for Ibiotirem, Kaa and Samanga, respectively. The result showed that the Niger Delta is polluted, and remediation efforts are necessary. Furthermore, the DPASV method could be used for routine mercury monitoring as it is cost-effective, user-friendly, and highly sensitive.

19.
Proc Natl Acad Sci U S A ; 121(40): e2405898121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312660

RESUMO

Global pollution has exacerbated accumulation of toxicants like methylmercury (MeHg) in seafood. Human exposure to MeHg has been associated with long-term neurodevelopmental delays and impaired cardiovascular health, while many micronutrients in seafood are beneficial to health. The largest MeHg exposure source for many general populations originates from marine fish that are harvested from the global ocean and sold in the commercial seafood market. Here, we use high-resolution catch data for global fisheries and an empirically constrained spatial model for seafood MeHg to examine the spatial origins and magnitudes of MeHg extracted from the ocean. Results suggest that tropical and subtropical fisheries account for >70% of the MeHg extracted from the ocean because they are the major fishing grounds for large pelagic fishes and the natural biogeochemistry in this region facilitates seawater MeHg production. Compounding this issue, micronutrients (selenium and omega-3 fatty acids) are lowest in seafood harvested from warm, low-latitude regions and may be further depleted by future ocean warming. Our results imply that extensive harvests of large pelagic species by industrial fisheries, particularly in the tropics, drive global public health concerns related to MeHg exposure. We estimate that 84 to 99% of subsistence fishing entities globally likely exceed MeHg exposure thresholds based on typical rates of subsistence fish consumption. Results highlight the need for both stringent controls on global pollution and better accounting for human nutrition in fishing choices.


Assuntos
Pesqueiros , Peixes , Compostos de Metilmercúrio , Alimentos Marinhos , Compostos de Metilmercúrio/análise , Humanos , Alimentos Marinhos/análise , Animais , Peixes/metabolismo , Exposição Ambiental , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise
20.
Environ Res ; 263(Pt 1): 120048, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313174

RESUMO

Black-odorous sediments provide ideal conditions for microbial mercury methylation. However, the multiple effects of carbon, sulfur, and iron on the microbial methylmercury of mercury in black-odorous sediments remains unclear. In this study, we conducted mercury methylation experiments using sediments collected from organically contaminated water bodies, as well as black-odorous sediments simulated in the laboratory. The results showed that black-odorous sediments exhibit a high capacity for mercury methylation. By simulating the blackening and odorization process in sediments, it was confirmed that dissolved oxygen, organic matter and sulfide were the primary factors triggering the black-odorous phenomenon in sediments. Regarding the influence of key factors in sediments on methylmercury formation, the batch tests demonstrated that high concentrations of organics additions (above 200 mg/L) may reduce bacterial activity and weaken mercury methylation in sediments. Under five different iron-sulfur ratios, the concentrations of methylmercury in the black-odorous sediments showed an increasing trend, the ratio of 5.0 Fe/S exhibited the highest MeHg accumulation. The iron-sulfur ratio in the sediment had a significant effect on the mercury methylation process, which was mainly due to the competition between Fe2+ and Hg2+ for sulfide sites and the adsorption/coprecipitation of Hg2+ by FeS. These findings offer a potential avenue for further understanding and controlling mercury methylation, contributing to the mitigation of the potential threat of mercury pollution to the environment and human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA