Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
FASEB J ; 38(13): e23809, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967126

RESUMO

The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/ß-catenin, Hippo, TGF-ß, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.


Assuntos
Carcinogênese , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Neurofibromatose 2/genética , Neurofibromatose 2/metabolismo , Neurofibromatose 2/patologia , Transdução de Sinais , Mutação
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928264

RESUMO

NF2-related schwannomatosis (NF2) is a genetic syndrome characterized by the growth of benign tumors in the nervous system, particularly bilateral vestibular schwannomas, meningiomas, and ependymomas. This review consolidates the current knowledge on NF2 syndrome, emphasizing the molecular pathology associated with the mutations in the gene of the same name, the NF2 gene, and the subsequent dysfunction of its product, the Merlin protein. Merlin, a tumor suppressor, integrates multiple signaling pathways that regulate cell contact, proliferation, and motility, thereby influencing tumor growth. The loss of Merlin disrupts these pathways, leading to tumorigenesis. We discuss the roles of another two proteins potentially associated with NF2 deficiency as well as Merlin: Yes-associated protein 1 (YAP), which may promote tumor growth, and Raf kinase inhibitory protein (RKIP), which appears to suppress tumor development. Additionally, this review discusses the efficacy of various treatments, such as molecular therapies that target specific pathways or inhibit neomorphic protein-protein interaction caused by NF2 deficiency. This overview not only expands on the fundamental understanding of NF2 pathophysiology but also explores the potential of novel therapeutic targets that affect the clinical approach to NF2 syndrome.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromina 2 , Neoplasias Cutâneas , Humanos , Neurofibromatoses/terapia , Neurofibromatoses/genética , Neurofibromatoses/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neurilemoma/genética , Neurilemoma/terapia , Neurilemoma/metabolismo , Neurilemoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Neurofibromatose 2/genética , Neurofibromatose 2/terapia , Neurofibromatose 2/metabolismo , Mutação , Transdução de Sinais , Terapia de Alvo Molecular
3.
Glia ; 72(8): 1518-1540, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794866

RESUMO

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.


Assuntos
Bainha de Mielina , Oligodendroglia , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Oligodendroglia/metabolismo , Animais , Bainha de Mielina/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Ratos , Actinas/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Citoesqueleto de Actina/metabolismo
4.
Oncol Ther ; 12(2): 257-276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760612

RESUMO

Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.

5.
Toxics ; 12(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38668461

RESUMO

The environmental load by isoxaflutole and its formulated herbicide products has increasingly become apparent because, after the ban of atrazine, isoxaflutole has become its replacement active ingredient (a.i.). Obtaining information regarding the fate of this a.i. in environmental matrices and its ecotoxicological effects on aquatic organisms is essential for the risk assessment of the herbicide. In this study, the effects of Merlin Flexx- and Merlin WG75 formulated isoxaflutole-based herbicide products and two selected additives (cyprosulfamide safener and 1,2-benzisothiazol-3(2H)-one antimicrobial agent) were investigated on Raphidocelis subcapitata in growth inhibition assays. In ecotoxicological tests, two conventional (optical density and chlorophyll-a content) and two induced fluorescence-based (Fv*/Fp: efficiency of the photosystem PSII and Rfd* changes in the observed ratio of fluorescence decrease) endpoints were determined by UV-spectrophotometer and by our FluoroMeter Module, respectively. Furthermore, dissipation of isoxaflutole alone and in its formulated products was examined by an HPLC-UV method. In ecotoxicological assays, the fluorescence-based Rfd* was observed as the most sensitive endpoint. In this study, the effects of the safener cyprosulfamide and the antimicrobial agent 1,2-benzisothiazol-3(2H)-one on R. subcapitata is firstly reported. The results indicated that the isoxaflutole-equivalent toxicity of the mixture of the isoxaflutole-safener-antimicrobial agent triggered lower toxicity (EC50 = 2.81 ± 0.22 mg/L) compared to the individual effect of the a.i. (EC50 = 0.02 ± 0.00 mg/L). The Merlin Flexx formulation (EC50 = 27.04 ± 1.41 mg/L) was found to be approximately 50-fold less toxic than Merlin WG75, which can be explained by the different chemical characteristics and quantity of additives in them. The additives influenced the dissipation of the a.i. in Z8 medium, as the DT50 value decreased by approximately 1.2- and 3.5-fold under light and dark conditions, respectively.

6.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338806

RESUMO

Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.


Assuntos
Técnicas Biossensoriais , Neoplasias , Neurofibromina 2 , Humanos , Transformação Celular Neoplásica , Genes Supressores de Tumor , Luciferases , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Técnicas Biossensoriais/métodos
7.
Brain Res Bull ; 207: 110870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185389

RESUMO

Traumatic brain injury (TBI) is a common disease worldwide with high mortality and disability rates. Besides the primary mechanical injury, the secondary injury associated with TBI can also induce numerous pathological changes, such as brain edema, nerve apoptosis, and neuroinflammation, which further aggravates neurological dysfunction and even causes the death due to the primary injury. Among them, neuronal apoptosis is a key link in the injury. Melanocortin-1 receptor (MC1R) is a G protein coupled receptor, belonging to the melanocortin receptor family. Studies have shown that activation of MC1R inhibits oxidative stress and apoptosis, and confers neuroprotective effects against various neurological diseases. Merlin is a protein product of the NF2 gene, which is widely expressed in the central nervous system (CNS) of mice, rats, and humans. Studies have indicated that Merlin is associated with MC1R. In this study, we explored the anti-apoptotic effects and potential mechanisms of MC1R. A rat model of TBI was established through controlled cortical impact. The MC1R-specific agonist Nle4-D-Phe7-α-Melanocyte (NDP-MSH) and the inhibitor MSG-606 were employed to explore the effects of MC1R and Merlin following TBI and investigated the associated mechanisms. The results showed that the expression levels of MC1R and Merlin were upregulated after TBI, and activation of MC1R promoted Merlin expression. Further, we found that MC1R activation significantly improved neurological dysfunction and reduced brain edema and neuronal apoptosis induced by TBI in rats. Mechanistically, its neuroprotective function and anti-apoptotic were partly associated with MC1R activation. In conclusion, we demonstrated that MC1R activation after TBI may inhibit apoptosis and confer neuroprotection by upregulating the expression of Merlin.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Ratos , Apoptose , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/patologia , Genes da Neurofibromatose 2 , Neurofibromina 2/genética , Neurofibromina 2/farmacologia , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo
8.
Res Sq ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37886501

RESUMO

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.

9.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834234

RESUMO

The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family produces the critical lipid regulator phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM). Here, we investigated the potential role of PIP5Kγ, a PIP5K isoform, in the Hippo pathway. The ectopic expression of PIP5Kγ87 or PIP5Kγ90, two major PIP5Kγ splice variants, activated large tumor suppressor kinase 1 (LATS1) and inhibited Yes-associated protein (YAP), whereas PIP5Kγ knockdown yielded opposite effects. The regulatory effects of PIP5Kγ were dependent on its catalytic activity and the presence of Merlin and LATS1. PIP5Kγ knockdown weakened the restoration of YAP phosphorylation upon stimulation with epidermal growth factor or lysophosphatidic acid. We further found that PIP5Kγ90 bound to the Merlin's band 4.1/ezrin/radixin/moesin (FERM) domain, forming a complex with PI(4,5)P2 and LATS1 at the PM. Notably, PIP5Kγ90, but not its kinase-deficient mutant, potentiated Merlin-LATS1 interaction and recruited LATS1 to the PM. Consistently, PIP5Kγ knockdown or inhibitor (UNC3230) enhanced colony formation in carcinoma cell lines YAP-dependently. In addition, PIP5Kγ90 interacted with heat shock cognate 71-kDa protein (Hsc70), which also contributed to Hippo pathway activation. Collectively, our results suggest that PIP5Kγ regulates the Hippo-YAP pathway by forming a functional complex with Merlin and LATS1 at the PI(4,5)P2-rich PM and via interplay with Hsc70.


Assuntos
Via de Sinalização Hippo , Neurofibromina 2 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células/fisiologia , Transdução de Sinais
10.
Fukushima J Med Sci ; 69(2): 95-103, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468280

RESUMO

Neurofibromatosis type 2 (NF2), a multiple neoplasia syndrome, is a manifestation of an impaired expression of the merlin protein, exerting inhibitory effects on cell proliferation signals due to abnormalities of the NF2 gene located on chromosome 22. About half of patients inherit a germline mutation from a parent, and nearly 60% of de novo NF2 patients are estimated to have somatic mosaicism. The development of technical methods to detect NF2 gene mutation, including targeted deep sequencing from multiple tissues, improved the diagnostic rate of mosaic NF2. With improved understanding of genetics and pathogenesis, the diagnostic criteria for NF2 were updated to assist in identifying and diagnosing NF2 at an earlier stage. The understanding of cell signaling pathways interacting with merlin has led to the development of molecular-targeted therapies. Currently, several translational studies are searching for possible therapeutic agents targeting VEGF or VEGF receptors. Bevacizumab, an anti-VEGF monoclonal antibody, is widely used in many clinical trials aiming for hearing improvement or tumor volume control. Currently, a randomized, double-masked trial to assess bevacizumab is underway. In this randomized control trial, 12 other Japanese institutions joined the principal investigators in the clinical trial originating at Fukushima Medical University. In this review, we will be discussing the latest research developments regarding NF2 pathophysiology, including molecular biology, diagnosis, and novel therapeutics.


Assuntos
Neurofibromatose 2 , Humanos , Neurofibromatose 2/genética , Neurofibromatose 2/terapia , Neurofibromatose 2/diagnóstico , Neurofibromina 2/genética , Neurofibromina 2/uso terapêutico , Bevacizumab/genética , Bevacizumab/uso terapêutico , Mutação , Genômica , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Apoptosis ; 28(9-10): 1484-1495, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368176

RESUMO

Neutrophil and neutrophil extracellular traps (NETs) were reported to be associated with tumor development, but the exact role and concrete mechanisms are still poorly understood, especially in triple negative breast cancer (TNBC). In this study, our results exhibited that NETs formation in TNBC tissues was higher than that in non-TNBC tissues, and NETs formation was distinctly correlated with tumor size, ki67 level and lymph node metastasis in TNBC patients. Subsequent in vivo experiments demonstrated that NETs inhibition could suppress TNBC tumor growth and lung metastasis. Further in vitro experiments uncovered that oncogenic function of NETs on TNBC cells were possibly dependent on TLR9 expression. We also found that neutrophils from peripheral blood of TNBC patients with postoperative fever were prone to form NETs and could enhance the proliferation and invasion of TNBC cells. Mechanistically, we revealed that NETs could interact with TLR9 to decrease Merlin phosphorylation which contributed to TNBC cell ferroptosis resistance. Our work provides a novel insight into the mechanism of NETs promoting TNBC progression and blocking the key modulator of NETs might be a promising therapeutic strategy in TNBC.


Assuntos
Armadilhas Extracelulares , Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Armadilhas Extracelulares/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Neurofibromina 2/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Neutrófilos/patologia , Proliferação de Células
12.
Cell Commun Signal ; 21(1): 149, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337213

RESUMO

BACKGROUND: The Hippo pathway plays a critical role in controlled cell proliferation. The tumor suppressor Merlin and large tumor suppressor kinase 1 (LATS1) mediate activation of Hippo pathway, consequently inhibiting the primary effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Phosphatidylinositol 4,5-bisphosphate (PIP2), a lipid present in the plasma membrane (PM), binds to and activates Merlin. Phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα) is an enzyme responsible for PIP2 production. However, the functional role of PIP5Kα in regulation of Merlin and LATS1 under Hippo signaling conditions remains unclear. METHODS: PIP5Kα, Merlin, or LATS1 knockout or knockdown cells and transfected cells with them were used. LATS1, YAP, and TAZ activities were measured using biochemical methods and PIP2 levels were evaluated using cell imaging. Low/high cell density and serum starvation/stimulation conditions were tested. Colocalization of PIP5Kα and PIP2 with Merlin and LATS1, and their protein interactions were examined using transfection, confocal imaging, immunoprecipitation, western blotting, and/or pull-down experiments. Colony formation and adipocyte differentiation assays were performed. RESULTS: We found that PIP5Kα induced LATS1 activation and YAP/TAZ inhibition in a kinase activity-dependent manner. Consistent with these findings, PIP5Kα suppressed cell proliferation and enhanced adipocyte differentiation of mesenchymal stem cells. Moreover, PIP5Kα protein stability and PIP2 levels were elevated at high cell density compared with those at low cell density, and both PIP2 and YAP phosphorylation levels initially declined, then recovered upon serum stimulation. Under these conditions, YAP/TAZ activity was aberrantly regulated by PIP5Kα deficiency. Mechanistically, either Merlin deficiency or LATS1 deficiency abrogated PIP5Kα-mediated YAP/TAZ inactivation. Additionally, the catalytic domain of PIP5Kα directly interacted with the band 4.1/ezrin/radixin/moesin domain of Merlin, and this interaction reinforced interaction of Merlin with LATS1. In accordance with these findings, PIP5Kα and PIP2 colocalized with Merlin and LATS1 in the PM. In PIP5Kα-deficient cells, Merlin colocalization with PIP2 was reduced, and LATS1 solubility increased. CONCLUSIONS: Collectively, our results support that PIP5Kα serves as an activator of the Hippo pathway through interaction and colocalization with Merlin, which promotes PIP2-dependent Merlin activation and induces local recruitment of LATS1 to the PIP2-rich PM and its activation, thereby negatively regulating YAP/TAZ activity. Video Abstract.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Neurofibromina 2/metabolismo , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Fosfatos/metabolismo , Membrana Celular/metabolismo , Lipídeos , Fosfoproteínas/metabolismo , Proliferação de Células
13.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174657

RESUMO

Primary liver cancer is the third leading cause of cancer-related death worldwide. An increasing body of evidence suggests that the Hippo tumor suppressor pathway plays a critical role in restricting cell proliferation and determining cell fate during physiological and pathological processes in the liver. Merlin (Moesin-Ezrin-Radixin-like protein) encoded by the NF2 (neurofibromatosis type 2) gene is an upstream regulator of the Hippo signaling pathway. Targeting of Merlin to the plasma membrane seems to be crucial for its major tumor-suppressive functions; this is facilitated by interactions with membrane-associated proteins, including CD44 (cluster of differentiation 44). Mutations within the CD44-binding domain of Merlin have been reported in many human cancers. This study evaluated the relative contribution of CD44- and Merlin-dependent processes to the development and progression of liver tumors. To this end, mice with a liver-specific deletion of the Nf2 gene were crossed with Cd44-knockout mice and subjected to extensive histological, biochemical and molecular analyses. In addition, cells were isolated from mutant livers and analyzed by in vitro assays. Deletion of Nf2 in the liver led to substantial liver enlargement and generation of hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (iCCAs), as well as mixed hepatocellular cholangiocarcinomas. Whilst deletion of Cd44 had no influence on liver size or primary liver tumor development, it significantly inhibited metastasis formation in Nf2-mutant mice. CD44 upregulates expression of integrin ß2 and promotes transendothelial migration of liver cancer cells, which may facilitate metastatic spreading. Overall, our results suggest that CD44 may be a promising target for intervening with metastatic spreading of liver cancer.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Receptores de Hialuronatos , Neoplasias Hepáticas , Neurofibromatose 2 , Animais , Humanos , Camundongos , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Genes da Neurofibromatose 2 , Receptores de Hialuronatos/genética , Neoplasias Hepáticas/genética , Neurofibromatose 2/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo
14.
Cancer Cell Int ; 23(1): 99, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37217995

RESUMO

Neurofibromatosis type 2 (NF2) is a genetic condition marked by the development of multiple benign tumors in the nervous system. The most common tumors associated with NF2 are bilateral vestibular schwannoma, meningioma, and ependymoma. The clinical manifestations of NF2 depend on the site of involvement. Vestibular schwannoma can present with hearing loss, dizziness, and tinnitus, while spinal tumor leads to debilitating pain, muscle weakness, or paresthesias. Clinical diagnosis of NF2 is based on the Manchester criteria, which have been updated in the last decade. NF2 is caused by loss-of-function mutations in the NF2 gene on chromosome 22, leading the merlin protein to malfunction. Over half of NF2 patients have de novo mutations, and half of this group are mosaic. NF2 can be managed by surgery, stereotactic radiosurgery, monoclonal antibody bevacizumab, and close observation. However, the nature of multiple tumors and the necessity of multiple surgeries over the lifetime, inoperable tumors like meningiomatosis with infiltration of the sinus or in the area of the lower cranial nerves, the complications caused by the operation, the malignancies induced by radiotherapy, and inefficiency of cytotoxic chemotherapy due to the benign nature of NF-related tumors have led a march toward exploring targeted therapies. Recent advances in genetics and molecular biology have allowed identifying and targeting of underlying pathways in the pathogenesis of NF2. In this review, we explain the clinicopathological characteristics of NF2, its genetic and molecular background, and the current knowledge and challenges of implementing genetics to develop efficient therapies.

15.
Otolaryngol Clin North Am ; 56(3): 421-434, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121611

RESUMO

Vestibular schwannomas (VSs) are benign tumors that develop after biallelic inactivation of the neurofibromatosis type 2 (NF2) gene that encodes the tumor suppressor merlin. Merlin inactivation leads to cell proliferation by dysregulation of receptor tyrosine kinase signaling and other intracellular pathways. In VS without NF2 mutations, dysregulation of non-NF2 genes can promote pathways favoring cell proliferation and tumorigenesis. The tumor microenvironment of VS consists of multiple cell types that influence VS tumor biology through complex intercellular networking and communications.


Assuntos
Neurofibromatose 2 , Neuroma Acústico , Humanos , Neuroma Acústico/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Neurofibromatose 2/genética , Transdução de Sinais/genética , Biologia , Genes da Neurofibromatose 2 , Microambiente Tumoral
16.
J Neuroinflammation ; 20(1): 99, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118736

RESUMO

BACKGROUND: Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS: After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS: PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS: These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.


Assuntos
NF-kappa B , Neurofibromina 2 , Camundongos , Animais , NF-kappa B/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Quinases Ativadas por p21/metabolismo , Ácido Caínico/toxicidade , Prostaglandina-E Sintases/metabolismo , Fosfatos , Transdução de Sinais , Convulsões/induzido quimicamente , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação
17.
J Trace Elem Med Biol ; 77: 127131, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36630759

RESUMO

OBJECTIVE: Although there is growing evidence linking the exposure to sulphur dioxide (SO2) and fluoride to human diseases, there is little data on the co-exposure of SO2 and fluoride. Moreover, literature on SO2 and fluoride co-exposure to enamel damage is insufficient. In this work, we concentrate on the concurrent environmental issues of excessive SO2 and fluoride in several coal-consuming regions. METHOD: To identify the toxicity of SO2 and fluoride exposure either separately or together, we used both ICR mice and LS8 cells, and factorial design was employed to assess the type of potential combined action. RESULT: In this study, co-exposure to SO2 and fluoride exacerbated enamel damage, resulting in more severe enamel defects of incisor and the damage occurred earlier. Cl-/HCO3- exchanger expression is increased by SO2 and fluoride in mouse incisor. Consistent with in vivo results, co-exposure of SO2 and fluoride decreased pHi and increased [Cl-]i level by increasing the expression of the Cl-/HCO3- exchanger in LS8 cells. Furthermore, SO2 and F may increase merlin protein expression, and merlin deficiency causes AE2 expression to decrease in vitro. CONCLUSION: Overall, these results indicate that co-exposure to SO2 and fluoride may result in more toxicity both in vitro and in vivo than a single exposure to SO2 and fluoride, suggesting that residents in areas contaminated with SO2 and fluoride may be more likely to suffer enamel damage.


Assuntos
Fluoretos , Dióxido de Enxofre , Camundongos , Animais , Humanos , Fluoretos/toxicidade , Dióxido de Enxofre/toxicidade , Neurofibromina 2 , Camundongos Endogâmicos ICR , Transporte de Íons
18.
Hum Pathol ; 133: 87-91, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35705112

RESUMO

Genomic alterations are increasingly important in the current paradigms for the classification, diagnosis, and treatment of renal cell carcinoma. Biallelic alterations involving NF2 have been identified across several currently recognized subtypes of renal cell carcinoma including clear cell renal cell carcinoma and papillary renal cell carcinoma among others and may be associated with a more aggressive disease course as well as advanced stage at presentation. In addition, emerging evidence suggests the existence of a clinicopathologically distinct subset of renal cell carcinoma cases driven by biallelic loss of NF2 expression. This subset of tumors is morphologically characterized by a constellation of morphologic features including hyalinizing fibrosis, eosinophilic cytology, psammomatous calcifications, and a nested growth pattern. These tumors include the recently described entities of biphasic hyalinizing psammomatous renal cell carcinoma as well as renal cell tumor with sex cord/gonadoblastoma-like features. Despite their oftentimes aggressive behavior, there is some evidence that these tumors may respond favorably to treatment regimens incorporating immune checkpoint inhibitors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neurofibromina 2 , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Genômica , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neurofibromina 2/genética
19.
Brain ; 146(4): 1697-1713, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36148553

RESUMO

Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.


Assuntos
Neoplasias Meníngeas , Meningioma , Neurilemoma , Animais , Humanos , Camundongos , Proliferação de Células , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Fatores de Transcrição de Domínio TEA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA