Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Infect Dis ; 24(1): 182, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342922

RESUMO

BACKGROUND: The human papillomavirus (HPV) infection may affect the miRNA expression pattern during cervical cancer (CC) development. To demonstrate the association between high-risk HPVs and the development of cervix dysplasia, we examined the expression patterns of hsa-miR-194-5p and hsa-miR-195-5p in Pap smear samples from southeast Iranian women. We compared samples that were HPV-positive but showed no abnormality in the cytological examination to samples that were HPV-positive and had severe dysplasia. METHODS: Pap smear samples were obtained from 60 HPV-positive (HPV-16/18) patients with histologically confirmed severe dysplasia (cervical intra-epithelial neoplasia (CIN 3) or carcinoma in situ) and the normal cytology group. The expression of hsa-miR-194-5p and hsa-miR-195-5p was analyzed by real-time quantitative PCR, using specific stem-loop primers and U6 snRNA as the internal reference gene. Clinicopathological features were associated with miRNA expression levels. Furthermore, functional enrichment analysis was conducted using in silico tools. The Kaplan-Meier survival method was also obtained to discriminate survival-significant candidate miRNAs in CC, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic value. RESULTS: Compared to HPV-positive cytologically normal Pap smear samples, hsa-miR-194-5p and hsa-miR-195-5p relative expression decreased significantly in HPV-positive patients with a severe dysplasia Pap smear. Kaplan-Meier analysis indicated a significant association between the miR-194 decrease and poor CC survival. In essence, ROC curve analysis showed that miR-194-5p and miR-195-5p could serve as valuable markers for the development of cervix dysplasia in individuals who are positive for high-risk HPVs. CONCLUSIONS: This study revealed that hsa-miR-194-5p and hsa-miR-195-5p may possess tumor suppressor capabilities in the context of cervical dysplasia progression. However, it remains uncertain whether these microRNAs are implicated in the transition of patients with high dysplasia to cervical cancer. We also showed the potential capability of candidate miRNAs as novel diagnostic biomarkers related to cervical dysplasia progression.


Assuntos
MicroRNAs , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Teste de Papanicolaou , Papillomavirus Humano 16/genética , Citologia , Irã (Geográfico) , Papillomavirus Humano 18/genética , MicroRNAs/genética
2.
Mol Metab ; 79: 101856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141848

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS: Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS: Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator ß-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION: Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Lisina , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico , Perilipina-2
3.
Heliyon ; 9(12): e22282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046164

RESUMO

Background: To investigate the possible molecular mechanism of miR-194-5p/PRC1/Wnt/ß-catenin signaling axis that regulates the invasive metastatic ability and radiotherapy sensitivity of esophageal squamous cell carcinoma (ESCC) cells. Methods: ESCC-related differentially expressed miRNAs were identified by microarray analysis, followed by the identification of a putative target. The targeting relationship between miR-194-5p and PRC1 was assayed. A series of mimic and shRNA were transfected into ESCC cells to find out the mechanism of miR-194-5p in ESCC by regulating PRC1 through Wnt/ß-catenin signaling pathway and their effect on cell proliferation, migration, invasion, and radiosensitivity as well as xenograft tumor growth and metastasis in nude mice. Results: We demonstrated low miR-194-5p expression and high PRC1 expression in ESCC tissues and cells. PRC1 was confirmed as a putative target for miR-194-5p. High miR-194-5p or silenced PRC1 enhanced ESCC cell radiosensitivity but reduced proliferation, invasion, and migration via PRC1 through modulation of the Wnt/ß-catenin signaling pathway. Animal experiments also validated that overexpression of miR-194-5p suppressed tumorigenesis and in vivo metastasis in nude mice.Conclusion: miR-194-5p can inhibit the Wnt/ß-catenin signaling pathway through down-regulation of the PRC1 gene, thereby enhancing the sensitivity of ESCC cells to radiotherapy and attenuating the invasion and metastasis ability of ESCC cells.

4.
Int J Nanomedicine ; 18: 6469-6486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026537

RESUMO

Background: The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose: To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods: NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results: In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation: This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion: NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Compostos de Organossilício , Pirazinas , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos , Pulmão/patologia , MicroRNAs/farmacologia , Compostos de Organossilício/farmacologia , Pirazinas/farmacologia
5.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762600

RESUMO

Among breast cancer (BC) subtypes, the most aggressive is triple negative BC (TNBC), which is prone to metastasis. We previously found that microRNA (miR)-194-5p is downregulated at the early stages of TNBC brain metastasis development. Additionally, the transcription factor myocyte enhancer factor 2 (MEF2)C, a bioinformatically predicted miR-194-5p target, was increasingly expressed throughout TNBC brain metastasis formation and disease severity. However, the contributions of these two players to malignant cells' features remain undetermined. This study aimed at disclosing the role of miR-194-5p and MEF2C in TNBC tumorigenesis. The transfection of 4T1 cells with a silencer for MEF2C or with a pre-miRNA for miR-194-5p was employed to study TNBC cells' phenotypic alterations regarding epithelial and mesenchymal markers, as well as migratory capability alterations. MEF2C-silenced cells presented a decline in both vimentin and cytokeratin expression, whereas the overexpression of miR-194-5p promoted an increase in cytokeratin and a reduction in vimentin, reflecting the acquisition of an epithelial phenotype. Both treatments reduced TNBC cells' migration. These results suggest that MEF2C may determine TNBC cells' invasive properties by partially determining the occurrence of epithelial-mesenchymal transition, while the overexpression of miR-194-5p promotes a decline in TNBC cells' aggressive behavior and reinforces this miRNA's role as a tumor suppressor in TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/genética , Vimentina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/metabolismo , Carcinogênese/genética , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo
6.
Cancers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37568783

RESUMO

Prostate cancer (PCa) is the most common cause of cancer death among African men. The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential expression of miRNAs between low and high Gleason scores in the plasma EVs of South African patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH) and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e., miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in plasma EVs as a tool for the identification of putative markers in the South African population. Our finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of PCa aggressiveness in this population.

7.
Cell Rep ; 42(6): 112550, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224018

RESUMO

Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Animais , Camundongos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Autoimmunity ; 56(1): 2201405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37073559

RESUMO

Stroke is an acute cerebrovascular disease that is now the most important cause of death due to brain problems in our country. CircRNAs are RNA circles that have been extensively involved in the disease. We aimed to investigate the mechanism of circ_0129657 in the pathogenesis of stroke. In this study, quantitative real-time polymerase chain reaction (RT-qPCR) and western blot assays were used to assess the expression of circ_0129657, miR-194-5p, and glia maturation factor beta (GMFB). Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay. 5-Ethynyl-2'-Deoxyuridine (EdU) assay was used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays were used to assess the relationship between miR-194-5p and circ_0129657 or GMFB. Mouse middle cerebral artery occlusion (MCAO) model was applied to mimic the cerebral ischemia/reperfusion injury. Our data showed that the levels of circ_0129657 and GMFB were significantly increased and the expression of miR-194-5p was significantly decreased in oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs). Silencing circ_0129657 expression in OGD-induced HBMECs could promote cell viability and cell proliferation. Moreover, circ_0129657 depletion also could inhibit apoptosis and inflammatory factor secretion. Circ_0129657 functioned as a sponge for miR-194-5p and could regulate GMFB expression via miR-194-5p competition. Furthermore, miR-194-5p downregulation or GMFB restoration could partially reverse the effects of circ_0129657 silencing on cell biological properties in OGD-induced HBMECs. Meanwhile, circ_0129657 knockdown decreased cerebral infarction volume and neurological impairment in MCAO mouse models. In conclusion, our findings suggest that circ_0129657 can inhibit cell proliferation and promote apoptosis and inflammatory factor secretion in HBMECs after oxygen-glucose deprivation via miR-194-5p/GMFB axis, providing evidence that circ_0129657 has the potential as a useful biological molecular marker in the diagnosis of stroke.


Assuntos
MicroRNAs , Acidente Vascular Cerebral , Animais , Camundongos , Humanos , Fator de Maturação da Glia , Células Endoteliais , Apoptose/genética , Encéfalo , Proliferação de Células/genética , Inflamação/genética , Modelos Animais de Doenças , MicroRNAs/genética
9.
Clin Exp Pharmacol Physiol ; 50(6): 463-475, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36809521

RESUMO

Osteosarcoma (OS) is the most common bone tumour with a high risk of metastatic progression and recurrence after treatment. Circular RNA hsa_circ_0000591 (circ_0000591) plays a compelling role in OS aggressiveness. However, the function and regulatory mechanism of circ_0000591 need to be further elucidated. As a subject of this study, a differential circRNA circ_0000591 was screened by circRNA microarray expression profiling (GSE96964). Expression changes of circ_0000591 were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Effects of circ_0000591 silencing on OS cell viability, proliferation, colony formation, apoptosis, invasion, and glycolysis were determined via functional experiments. The mechanism by which circ_0000591 functions as a molecular sponge for miRNAs was predicted using bioinformatics analysis and validated using dual-luciferase reporter and RNA pull-down assays. Xenograft assay was done to validate the function of circ_0000591. Circ_0000591 was strongly expressed in OS samples and cells. Silencing of circ_0000591 lessened cell viability, repressed cell proliferation, invasion, glycolysis, and promoted cell apoptosis. Importantly, circ_0000591 regulated HK2 expression by serving as a miR-194-5p molecular sponge. MiR-194-5p silencing impaired circ_0000591 downregulation-mediated suppression of OS cell malignancy and glycolysis. HK2 overexpression weakened the inhibiting impacts of miR-194-5p on OS cell malignancy and glycolysis. Also, circ_0000591 silencing decreased xenograft tumour growth in vivo. Circ_0000591 drove OS glycolysis and growth by upregulating HK2 by sequestering miR-194-5p. The study highlighted the tumour-promoting function of circ_0000591 in OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , RNA Circular , Proliferação de Células , Glicólise , Linhagem Celular Tumoral
10.
Kaohsiung J Med Sci ; 39(2): 154-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36647717

RESUMO

Temporal lobe epilepsy (TLE) leads to extensive degradation of the quality of life of patients. Glycyrrhizic acid (GA) has been reported to exert neuroprotective effects on status epilepticus. Herein, the current study set out to explore the functional mechanism of GA in TLE young rats. Firstly, TLE young rat models were established using the lithium chloride and pilocarpine regimen and then subjected to treatment with different doses of GA, miR-194-5p-antagomir, or/and sh-prostaglandin-endoperoxide synthase 2 (PTGS2) to observe changes in iron content, glutathione and malondialdehyde levels, and GPX4 (glutathione peroxidase 4) and PTGS2 protein levels in the hippocampus. Neuronal injury and apoptosis were assessed through HE, Nissl, and TUNEL staining. Additionally, the expression patterns of miR-194-5p were detected. The binding site of miR-194-5p and PTGS2 was verified with a dual-luciferase assay. Briefly, different doses of GA (20, 40, and 60 mg/kg) reduced the epileptic score, frequency, and duration in TLE young rats, along with reductions in iron content, lipid peroxidation, neuronal injury, and apoptosis in the hippocampus. Silencing of miR-194-5p partly annulled the action of GA on inhibiting ferroptosis and attenuating neuronal injury in TLE young rats. Additionally, PTGS2 was validated as a target of miR-194-5p. GA inhibited ferroptosis and ameliorated neuronal injury in TLE young rats via the miR-194-5p/PTGS2 axis. Overall, our findings indicated that GA exerts protective effects on TLE young rats against neuronal injury by inhibiting ferroptosis through the miR-194-5p/PTGS2 axis.


Assuntos
Epilepsia do Lobo Temporal , Ferroptose , MicroRNAs , Animais , Ratos , Apoptose , Ciclo-Oxigenase 2/genética , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Ferroptose/genética , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Ferro , MicroRNAs/metabolismo
11.
Funct Integr Genomics ; 23(1): 52, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717528

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor with high recurrence, metastasis rates, and poor prognosis. Numerous studies discover that circular RNA (circRNA) is closely associated with OSCC progression. Hsa_circ_0020377 has been aberrantly expressed in OSCC, but its role in tumor growth and metastasis remains largely unclear. Hsa_circ_0020377, microRNA-194-5p (miR-194-5p), and Krüppel-like factor 7 (KLF7) contents were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferative, cycle progression migration, and invasion were measured using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and Transwell assays. The glycolysis level was detected via specific kits. Cyclin D1, E-cadherin, hexokinase 2 (HK2), and KLF7 protein levels were detected via western blot. Using predicting bioinformatics software, the binding between miR-194-5p and hsa_circ_0020377 or KLF7 was verified using a dual-luciferase reporter and RNA Immunoprecipitation (RIP). Beyond that, a xenograft tumor model was used to analyze the role of hsa_circ_0020377 on tumor cell growth in vivo. Increased hsa_circ_0020377 and KLF7 and reduced miR-194-5p were found in OSCC tissues and cell lines. Loss-of-function experiments proved that hsa_circ_0020377 depletion might block OSCC cell proliferation, cycle progression, migration, invasion, and glycolysis in vitro. In xenograft mouse models, hsa_circ_0020377 silencing might suppress tumor growth. In addition, mechanism research suggested that hsa_circ_0020377 could bind with miR-194-5p and enhance its target gene (KLF7), thereby affecting OSCC development. These results broaden our insights regarding the regulation of OSCC progression via circRNA and act as a reference for future clinical studies in OSCC diagnosis and treatment.


Assuntos
Fatores de Transcrição Kruppel-Like , MicroRNAs , Neoplasias Bucais , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Neoplasias Bucais/genética , RNA Circular/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
12.
Cell Cycle ; 22(3): 331-346, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36200131

RESUMO

BACKGROUND: Hypertensive retinopathy (HR) is a retinal disease that may lead to vision loss and blindness. Sex-determining region Y (SRY)-box (SOX) family transcription factors have been reported to be involved in HR development. In this study, the role and upstream mechanism of SRY-box transcription factor 17 (SOX17) in HR pathogenesis were investigated. METHODS: SOX17 and miR-194-5p levels in Angiotensin II (Ang II)-stimulated human retinal microvascular endothelial cells (HRMECs) and retinas of mice were detected by RT-qPCR. SOX17 protein level as well as levels of tight junction proteins and vascular endothelial growth factor (VEGF) signaling-associated proteins were quantified by western blotting. Tube formation assays were performed to evaluate angiogenesis in HRMECs. The structure of mouse retinal tissues was observed by H&E staining. The interaction between miR-194-5p and SOX17 was confirmed by a luciferase reporter assay. RESULTS: SOX17 was upregulated in HRMECs treated with Ang II. SOX17 knockdown inhibited angiogenesis in Ang II-stimulated HRMECs and increased tight junction protein levels. Mechanically, SOX17 was targeted by miR-194-5p. Moreover, miR-194-5p upregulation restrained angiogenesis and increased tight junction protein levels in Ang II-treated HRMECs, and the effect was reversed by SOX17 overexpression. MiR-194-5p elevation inactivated VEGF signaling via targeting SOX17. miR-194-5p alleviated pathological symptoms of HR in Ang II-treated mice, and its expression was negatively correlated with SOX17 expression in the retinas of model mice. CONCLUSIONS: MiR-194-5p upregulation suppressed Ang II-stimulated HRMEC dysfunction and mitigates the symptoms of HR in mice by regulating the SOX17/VEGF signaling.


Assuntos
Retinopatia Hipertensiva , MicroRNAs , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Proliferação de Células , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Retinopatia Hipertensiva/metabolismo , Retinopatia Hipertensiva/patologia , Proteínas de Junções Íntimas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/farmacologia , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia
13.
Cancer Cell Int ; 22(1): 415, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539807

RESUMO

BACKGROUND: MicroRNAs (miRNAs), as an indispensable type of non-coding RNA (ncRNA), participate in diverse biological processes. However, the specific regulatory mechanism of certain miRNAs in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: The expression of miR-194-5p in PDAC tissue microarray and cell lines were detected by RNA-scope and real-time quantitative PCR (RT-qPCR). The function of proliferation and migration carried by miR-194-5p in vitro and vivo was observed by several functional experiments. Informatics methods and RNA sequencing data were applied to explore the target of miR-194-5p and the upstream circular RNA (circRNA) of miR-194-5p. RNA-binding protein immunoprecipitation (RIP) assay and dual-luciferase reporter assay confirmed the relationships between miR-194-5p and SOCS2 or miR-194-5p and circPVRL3. The proliferation and migration abilities of SOCS2 and circPVRL3 were accessed by rescue experiments. RESULTS: In this study, we aimed to clarify the molecular mechanisms of miR-194-5p, which has critical roles during PDAC progression. We found that the expression of miR-194-5p was significantly upregulated in PDAC tissue compared to tumor-adjacent tissue and was highly related to age and nerve invasion according to RNAscope and RT‒qPCR. Overexpression of miR-194-5p accelerated the cell cycle and enhanced the proliferation and migration processes according to several functional experiments in vitro and in vivo. Specifically, circPVRL3, miR-194-5p, and SOCS2 were confirmed to work as competing endogenous RNAs (ceRNAs) according to informatics methods, RIP, and dual-luciferase reporter assays. Additionally, the rescue experiments confirmed the relationship among miR-194-5p, circPVRL3, and SOCS2 mRNA. Finally, the circPVRL3/miR-194-5p/SOCS2 axis activates the PI3K/AKT signaling pathway to regulate the proliferation and metastasis of PDAC. CONCLUSION: Our findings indicated that an increase of miR-194-5p caused by circPVRL3 downregulation stimulates the PI3K/AKT signaling pathway to promote PDAC progression via the circPVRL3/miR-194-5p/SOCS2 axis, which suggests that the circPVRL3/miR-194-5p/SOCS2 axis may be a potential therapeutic target for PDAC patients.

14.
Front Cardiovasc Med ; 9: 975640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158838

RESUMO

It has been reported that atherosclerosis (AS) is the basis of the development of coronary artery disease (CAD). In addition, a previous study demonstrated that long non-coding RNA LINC00452 was notably downregulated in the whole blood of patients with CAD. However, the role of LINC00452 in the progression of AS remains unclear. Therefore, to mimic AS in vitro, HUVECs were treated with 100 µg/ml oxLDL for 24 h. Reverse transcription-quantitative PCR was performed to detect the expression levels of LINC00452 and IGF1R in HUVECs. Additionally, the cell angiogenetic ability was assessed by tube formation assay, while dual-luciferase reporter assay was carried out to explore the association among LINC00452, miR-194-5p, and IGF1R. The results showed that LINC00452 was downregulated in oxLDL-treated HUVECs. In addition, HUVEC treatment with oxLDL significantly inhibited cell viability, proliferation, and angiogenesis. However, the above effects were all reversed by LINC00452 overexpression. Furthermore, LINC00452 overexpression in HUVECs remarkably inhibited oxLDL-induced cell apoptosis and endothelial to mesenchymal transition. In addition, LINC00452 overexpression could markedly reverse oxLDL-induced inhibition of angiogenesis in HUVEC. The results of dual-luciferase reporter assay indicated that LINC00452 could bind with miR-194-5p. In addition, IGF1R was identified as a downstream target of miR-194-5p. And LINC00452 was able to regulate the miR-194-5p/IGF1R axis in HUVECs. Moreover, LINC00452 overexpression obviously reversed oxLDL-mediated growth inhibition of HUVEC via regulating the miR-194-5p/IGF1R axis. Overall, the current study demonstrated that LINC00452 overexpression reversed oxLDL-induced growth inhibition of HUVECs via regulating the miR-194-5p/IGF1R axis, thus providing a potential beneficial targets for AS.

15.
Cell Cycle ; 21(20): 2145-2164, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35708677

RESUMO

circFCHO2 has been revealed to be overexpressed in gastric cancer (GC) patients. This article identified the function of circFCHO2 on GC progression. The expression of circFCHO2, miR-194-5p and JAK1 in 30 GC patients and cells was monitored by quantitative reverse transcription-polymerase chain reaction. circFCHO2 localization in GC cells was monitored by RNA fluorescence in situ hybridization. Cell counting kit-8 assay, 5-ethynyl-2-deoxyuridine staining, transwell experiment, tube formation and sphere formation experiments were applied to detect GC cell proliferation, invasion, angiogenesis and cancer stem cell characteristics. Dual-luciferase reporter gene assay, RNA pull down assay and RNA immunoprecipitation experiment were utilized to research the binding between two genes. In vivo tumorigenesis and lung metastasis were studied using nude mice. Immunohistochemistry and hematoxylin-eosin staining were conducted. Protein expression was assessed by Western blot. Serum exosomes of GC patients and healthy participants were isolated. circFCHO2 up-modulation in GC patients was related to poor outcome. circFCHO2 was located in the cytoplasm of GC cells. circFCHO2 silencing weakened the proliferation, invasion, angiogenesis and stem cell characteristics of GC cells. miR-194-5p knockdown counteracted this effect. circFCHO2 activated the JAK1/STAT3 pathway by sponging miR-194-5p. miR-194-5p overexpression attenuated the malignant phenotypes of GC cells. JAK1 overexpression abrogated this effect. circFCHO2 silencing weakened GC cells growth and lung metastasis in vivo. circFCHO2 was up-modulated in serum exosomes of GC patients. circFCHO2 was an oncogene in GC by activating the JAK1/STAT3 pathway via sponging miR-194-5p. circFCHO2 might be a novel target and diagnostic marker for GC.


Assuntos
Neoplasias Pulmonares , Proteínas de Membrana/genética , MicroRNAs , RNA Circular/metabolismo , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Desoxiuridina , Amarelo de Eosina-(YS) , Regulação Neoplásica da Expressão Gênica , Hematoxilina , Humanos , Hibridização in Situ Fluorescente , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia
16.
Front Cardiovasc Med ; 9: 815916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321102

RESUMO

Objective: Many studies have reported that microRNAs (miRs) are involved in the regulation of doxorubicin (DOX)-induced cardiotoxicity. MiR-194-5p has been reported significantly upregulated in patients with myocardial infarction; however, its role in myocardial diseases is still unclear. Various stimuluses can trigger the endoplasmic reticulum (ER) stress and it may activate the apoptosis signals eventually. This study aims to explore the regulatory role of miR-194-5p in DOX-induced ER stress and cardiomyocyte apoptosis. Methods: H9c2 was treated with 2 µM DOX to induce apoptosis, which is to stimulate the DOX-induced cardiotoxicity model. The expression of miR-194-5p was detected by quantitative real-time PCR (qRT-PCR); the interaction between miR-194-5p and P21-activated kinase 2 (PAK2) was tested by dual luciferase reporter assay; terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and caspase-3/7 activity were used to assess apoptosis; trypan blue staining was applied to measure cell death; Western blotting was performed to detect protein expressions; and ER-related factors splicing X-box binding protein 1 (XBP1s) was detected by polyacrylamide gel electrophoresis and immunofluorescence to verify the activation of ER stress. Results: MiR-194-5p was upregulated in cardiomyocytes and mouse heart tissue with DOX treatment, while the protein level of PAK2 was downregulated. PAK2 was predicted as the target of miR-194-5p; hence, dual luciferase reporter assay indicated that miR-194-5p directly interacted with PAK2 and inhibited its expression. TUNEL assay, caspase-3/7 activity test, and trypan blue stain results showed that either inhibition of miR-194-5p or overexpression of PAK2 reduced DOX-induced cardiomyocyte apoptosis. Silencing of miR-194-5p also improved DOX-induced cardiac dysfunction. In addition, DOX could induce ER stress in H9c2, which led to XBP1 and caspase-12 activation. The expression level of XBP1s with DOX treatment increased first then decreased. Overexpression of XBP1s suppressed DOX-induced caspase-3/7 activity elevation as well as the expression of cleaved caspase-12, which protected cardiomyocyte from apoptosis. Additionally, the activation of XBP1s was regulated by miR-194-5p and PAK2. Conclusion: Our findings revealed that silencing miR-194-5p could alleviate DOX-induced cardiotoxicity via PAK2 and XBP1s in vitro and in vivo. Thus, the novel miR-194-5p/PAK2/XBP1s axis might be the potential prevention/treatment targets for cancer patients receiving DOX treatment.

17.
Mol Biotechnol ; 64(7): 780-790, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35107755

RESUMO

Tongue squamous cell carcinoma (TSCC) is a common malignancy with aggressive biological behaviors. Mitochondrial fission regulator 1 (MTFR1), is aberrantly expressed in head and neck squamous cell carcinoma (HNSC), but its role in TSCC remains unclear. We aimed to explore the role of MTFR1 in TSCC. The expression of long non-coding RNA small nucleolar RNA host gene 1 (SNHG1), microRNA-194-5p and MTFR1 in TSCC cells was measured by RT-qPCR. Luciferase reporter assay and RNA pull down assay were applied to confirm the binding capacity between miR-194-5p and SNHG1 (or MTFR1). TSCC cell invasion and migration were accessed by Transwell assays. The protein levels of MTFR1 and epithelial-mesenchymal transition (EMT) markers were examined by western blot. MTFR1 had high expression level in TSCC. MTFR1 knockdown inhibited transforming growth factor ß1 (TGFß1)-induced EMT, migration and invasion of TSCC cells in vitro. MiR-194-5p targeted MTFR1 and negatively regulated its expression. In addition, SNHG1 upregulated the expression of MTFR1 by binding with miR-194-5p. Importantly, SNHG1 promoted EMT, invasion and migration of TSCC cells by upregulating MTFR1. SNHG1/miR-194-5p/MTFR1 axis promotes TGFß1-induced EMT, migration and invasion of cells in TSCC, which could be potential targets for treating TSCC patients.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias da Língua , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Língua/metabolismo , Língua/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
18.
Environ Toxicol ; 37(3): 593-602, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850997

RESUMO

BACKGROUND: Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely associated with bone diseases. Circular RNAs are reported to be involved in BMSC differentiation. CircSmg5 (circ_0001145) has been identified to be downregulated in an osteoporosis mouse model. In this study, we aimed to explore the function and regulatory mechanism of circSmg5 in BMSC osteogenic differentiation. METHODS: The Alizarin Red staining and alkaline phosphatase staining assays were performed to explore the osteogenic differentiation of BMSCs. The interaction between circ_0001145, miR-194-5p, and frizzled class receptor 6 (Fzd6) was analyzed by luciferase reporter assay. The nuclear translocation of ß-catenin was assessed using immunofluorescence staining. RESULTS: CircSmg5 is in stable circular structure. CircSmg5 expression was elevated in the process of BMSC osteogenic differentiation. CircSmg5 overexpression promoted the osteogenic differentiation of BMSCs. CircSmg5 bound with miR-194-5p, whose expression was decreased in the osteogenic differentiation of BMSCs. MiR-194-5p directly targeted the 3'UTR of Fzd6. The mRNA and protein levels of Fzd6 were positively modulated by circSmg5 and negatively regulated by miR-194-5p in BMSCs. CONCLUSION: CircSmg5 was demonstrated to promote the BMSC osteogenic differentiation by targeting the miR-194-5p/Fzd6 axis to activate the Wnt/ß-catenin signaling.


Assuntos
Receptores Frizzled , Células-Tronco Mesenquimais , MicroRNAs , beta Catenina , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , Osteogênese/genética , RNA Circular , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
19.
Front Oncol ; 12: 1028825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36798690

RESUMO

Background: The absence of breast cancer cells in surgical specimens, i.e., pathological complete response (pCR), is widely recognized as a favorable prognostic factor after neoadjuvant therapy. In contrast, the presence of disease at surgery characterizes a prognostically heterogeneous group of patients. Here, we challenged circulating microRNAs (miRNAs) at the end of neoadjuvant therapy as potential prognostic biomarkers in the NeoALTTO study. Methods: Patients treated within the trastuzumab arm (i.e., pre-operative weekly trastuzumab for 6 weeks followed by the addition of weekly paclitaxel for 12 weeks; post-operative FEC for 3 cycles followed by trastuzumab up to complete 1 year of treatment) were randomized into a training (n= 54) and testing (n= 72) set. RT-PCR-based high-throughput miRNA profile was performed on plasma samples collected at the end of neoadjuvant treatment of both sets. After normalization, circulating miRNAs associated with event free survival (EFS) were identified by univariate and multivariate Cox regression model. Results: Starting from 23 circulating miRNAs associated with EFS in the training set, we generated a 3-circulating miRNA prognostic signature consisting of miR-185-5p, miR-146a-5p, miR-22-3p, which was confirmed in the testing set. The 3-circulating miRNA signature showed a C-statistic of 0.62 (95% confidence interval [95%CI] 0.53-0.71) in the entire study cohort. By resorting to a multivariate Cox regression model we found a statistical significant interaction between the expression values of miR-194-5p and pCR status (p.interaction =0.005) with an estimate Hazard Ratio (HR) of 1.83 (95%CI 1.14- 2.95) in patients with pCR, and 0.87 (95%CI 0.69-1.10) in those without pCR. Notably, the model including this interaction along with the abovementioned 3-circulating miRNA signature provided the highest discriminatory capability with a C-statistic of 0.67 (95%CI 0.58-0.76). Conclusions: Circulating miRNAs are informative to identify patients with different prognosis among those with heterogeneous response after trastuzumab-based neoadjuvant treatment, and may be an exploitable tool to select candidates for salvage adjuvant therapy.

20.
Ann Hepatol ; 27 Suppl 1: 100571, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718169

RESUMO

INTRODUCTION AND OBJECTIVES: Long non-coding RNAs (lncRNAs) have great potential as therapeutic targets in hepatocellular carcinoma (HCC). In this study, we aimed to uncover the function and molecular mechanism of long intergenic non-protein coding RNA 1006 (LINC01006) in HCC. MATERIALS AND METHODS: Mice were injected with HCC cells in order to establish the HCC model. Quantitative reverse transcription polymerase chain reaction was used to determine the expression levels of LINC01006, cell adhesion molecule 1 (CADM1), and microRNA (miR)-194-5p in HCC tissues and cells. The cell proliferation, invasion, and migration abilities were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, transwell, and wound healing assays. The interrelation between LINC01006, miR-194-5p, and CADM1 was confirmed by a dual-luciferase reporter assay. Western blotting was employed to assess the relative protein expression level of CADM1. RESULTS: LINC01006 and CADM1 displayed upregulation, but miR-194-5p exhibited downregulation in HCC cells and tissues. Short hairpin (sh)-LINC01006 and miR-194-5p mimics repressed the proliferative, migratory, and invasive capacities of HCC cells, and injection of sh-LINC01006 restrained the growth of HCC tumours in mice. LINC01006 served as a competing endogenous RNA of miR-194-5p and was inversely correlated with miR-194-5p. CADM1 was targeted by miR-194-5p, inversely correlated with miR-194-5p, and positively associated with LINC01006. Furthermore, transfection of pcDNA-CADM1 or the miR-194-5p inhibitor reversed the suppressive effects of sh-LINC01006 on the proliferation, invasion, and migration abilities of HCC cells. CONCLUSIONS: Downregulation of LINC01006 repressed the development of HCC by sponging miR-194-5p to modulate the expression of CADM1, implying its potential as a therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/patologia , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA