Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 168: 396-405, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352689

RESUMO

Waste cigarette filters mainly contain hardly degradable cellulose acetate, toxic nicotine, and traces of heavy metals, and therefore cause environmental pollution hazards when discarded. In order to convert cigarette butt waste into a valuable product, this article investigates the preparation of activated carbon from cigarette butts via a two-step process of hydrothermal reaction and a subsequent chemical activation with phosphoric acid as an activator. During hydrothermal reaction, it was found that a process of decarboxylation and dehydration cleavage of acetate occurs, leading to micron fragments and subsequent agglomeration into carbonaceous micro-spheres. The cigarette-butts-derived activated carbon micro-spheres have a high BET surface area of âˆ¼ 1406 m2/g and NH3 adsorption capacity of âˆ¼ 35.9 mg/g. It was revealed that the ammonia adsorption capacity tends to be positively and linearly correlated with the acidic functional group content of the activated carbon surface while negatively with BET surface area.


Assuntos
Carvão Vegetal , Produtos do Tabaco , Amônia , Adsorção , Poluição Ambiental
2.
Animals (Basel) ; 11(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673571

RESUMO

Two studies were conducted to determine the stability of vitamin K3 (VK3) in swine diets during extrusion or pelleting. The two sources were menadione sodium bisulfite (MSB) and menadione nicotinamide bisulfite (MNB), and the three formulations were crystal micro-capsule formulation and micro-sphere formulation. The recovery of six types of VK3 in swine diets was investigated after extrusion at 100 °C or 135 °C in Experiment 1. The recovery of six types of VK3 was investigated when the diets were pelleted at 60 °C (low temperature; LT) or 80 °C (high temperature; HT) and the length to diameter ratios were 5.2:1 (low length to diameter ratio; LR) or 7.2:1 (high length to diameter ratio; HR) in Experiment 2. In Experiment 1, MNB recovery (72.74%) was higher than MSB recovery (64.67%) after extrusion, while recovery of VK3 of crystal (74.16%) was higher than the recovery of micro-capsule (65.25%) and micro-sphere (66.72%). The recovery of VK3 (70.88%) was higher when extruded at 100 °C than that at 135 °C (66.54%). In Experiment 2, MNB recovery (86.21%) was higher than MSB recovery (75.49%) after pelleting, while the recovery of VK3 of micro-capsule (85.06%) was higher than the recovery of crystal (81.40%) and micro-sphere (76.09%). The recovery of VK3 (75.50%) was lower after HTHR pelleting than LTLR (83.62%), LTHR (81.52%) or HTLR (82.76%) treatment. Our results show that MNB has greater stability than MSB. VK3 of crystal or VK3 of micro-capsule were recommended for extrusion or pelleting, respectively.

3.
J Hazard Mater ; 392: 122356, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109795

RESUMO

Magnetic materials have been widely used for constructing substrate in surface enhanced Raman scattering (SERS) sensing due to the magnetic responsibility. Here, we reported a facile and effective approach to construct multi-functional SERS substrate based on assembling Ag nanoparticles (NPs) on porous Fe microspheres. The porous Fe microspheres were prepared through hydrogen reduction of Fe2O3 NPs with porous structure, in which the size and morphology of Fe could be well controlled. The surface of Fe was grafted with amino group, and then decorated with Ag NPs. The surface area and pore size of Fe microsphere were characterized by nitrogen adsorption and desorption. The Fe@Ag nanocomposite illustrated a good SERS activity. Furthermore, this substrate could be used for pesticide monitoring by portable Raman spectrometer. Especially, the porous Fe microsphere could adsorb analyte from target sample and the Fe@Ag could be concentrated by magnetic force to amplify the SERS signal for thiram detection.

4.
Micromachines (Basel) ; 10(7)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319453

RESUMO

In this study we present the design and functionality of a pneumatic drop-on-demand droplet generator that produces metallic micro particles with a size range of 300 µm to 1350 µm at high temperatures of up to 1600 °C. Molten metal droplets were generated from an EN 1.3505 (AISI 52100) steel which solidified during a falling distance of 6.5 m. We analyzed the resulting particle size and morphology using static image analysis. Furthermore, the droplet formation mode was analyzed using high-speed recordings and the pressure oscillation was measured in the crucible. The system is meant to be reproducible in all aspects and therefore the in-situ measurements are set to control the droplet size and trajectory during the run. Additionally, the ex-situ measurements are done on the particles in order to characterize them in size and morphology aspects.

5.
Micromachines (Basel) ; 8(9)2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30400463

RESUMO

The paper presents an innovative mechanism for the singularization of micro-spheres, which can be effectively employed in a diverse range of robotized applications in micro-electronics and micro-mechanics. Many miniaturized devices are currently being developed and consist of different micro-components to be precisely assembled. The demanding product and process requirements can be met by automating the assembly phases, which include sorting and feeding the micro-components. Therefore, accurate, high-throughput, and modular mechanisms and tools able to supply a number of micro-components, or even a single element for the subsequent operations, play a significant role. In this context, this work focused on the development of a novel strategy for separating a single component from an unstructured stock of identical parts, in particular of micro-spheres with diameters of 0.2⁻1 mm. Suitable expedients were considered to overcome the adhesive effects that can become significant at the micro-scale due to the very small size and low mass of the micro-spheres. The paper describes the operating principle and the actuation strategies of the mechanism. The design and the development of a prototype for singularizing micro-spheres with a diameter of 0.6 mm are thoroughly discussed. Finally, the results of experimental singularization tests demonstrate the method effectiveness and the mechanism performance.

6.
Acta Biomater ; 33: 183-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26827780

RESUMO

BACKGROUND: Mechanical characteristics of vascular tissue may play a role in different arterial pathologies, which, amongst others, requires robust constitutive descriptions to capture the vessel wall's anisotropic and non-linear properties.Specifically, the complex 3D network of collagen and its interaction with other structural elements has a dominating effect of arterial properties at higher stress levels.The aim of this study is to collect quantitative collagen organization as well as mechanical properties to facilitate structural constitutive models for the porcine carotid artery.This helps the understanding of the mechanics of swine carotid arteries, being a standard in clinical hypothesis testing, in endovascular preclinical trials for example. METHOD: Porcine common carotid arteries (n=10) were harvested and used to (i) characterize the collagen fiber organization with polarized light microscopy, and (ii) the biaxial mechanical properties by inflation testing.The collagen organization was quantified by the Bingham orientation density function (ODF), which in turn was integrated in a structural constitutive model of the vessel wall.A one-layered and thick-walled model was used to estimate mechanical constitutive parameters by least-square fitting the recorded in vitro inflation test results.Finally, uniaxial data published elsewhere were used to validate the mean collagen organization described by the Bingham ODF. RESULTS: Thick collagen fibers, i.e.the most mechanically relevant structure, in the common carotid artery are dispersed around the circumferential direction.In addition, almost all samples showed two distinct families of collagen fibers at different elevation, but not azimuthal, angles.Collagen fiber organization could be accurately represented by the Bingham ODF (κ1,2,3=[13.5,0.0,25.2] and κ1,2,3=[14.7,0.0,26.6]; average error of about 5%), and their integration into a structural constitutive model captured the inflation characteristics of individual carotid artery samples.Specifically, only four mechanical parameters were required to reasonably (average error from 14% to 38%) cover the experimental data over a wide range of axial and circumferential stretches.However, it was critical to account for fibrilar links between thick collagen fibers.Finally, the mean Bingham ODF provide also good approximation to uniaxial experimental data. CONCLUSIONS: The applied structural constitutive model, based on individually measured collagen orientation densities, was able to capture the biaxial properties of the common carotid artery. Since the model required coupling amongst thick collagen fibers, the collagen fiber orientations measured from polarized light microscopy, alone, seem to be insufficient structural information. Alternatively, a larger dispersion of collagen fiber orientations, that is likely to arise from analyzing larger wall sections, could have had a similar effect, i.e. could have avoided coupling amongst thick collagen fibers. STATEMENT OF SIGNIFICANCE: The applied structural constitutive model, based on individually measured collagen orientation densities, was able to capture the biaxial and uniaxial properties of the common carotid artery. Since the model required coupling amongst thick collagen fibers, an effective orientation density that accounts for cross-links between the main collagen fibers has been porposed. The model provides a good approximation to the experimental data.


Assuntos
Artérias Carótidas/fisiologia , Colágeno/química , Modelos Cardiovasculares , Animais , Artérias Carótidas/anatomia & histologia , Feminino , Modelos Biológicos , Estresse Mecânico , Sus scrofa , Resistência à Tração
7.
Food Chem ; 184: 72-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25872428

RESUMO

A novel molecularly imprinted polymer micro-spheres (MIPMs) with phenylethanolamine A as the template and the p-vinylbenzoic acid as the functional monomer were synthesized for the selective absorption of clenbuterol and other ß-agonists including brombuterol, bromchlorbuterol, clorprenaline and ractopamine. The absorption performances of the MIPMs were studied and the experimental results demonstrated that the extraction capacities of five ß-agonists with MIPMs were about from 2.7 to 3.4 times as much as that with non-imprinted polymer micro-spheres. Based on the clean-up of five ß-agonists in pork tissues with MIPMs, a sensitive determination method for five ß-agonists coupled with ultra performance chromatography coupled tandem mass spectrometry detection has been developed. The limits of detection for five ß-agonists were <0.02 µg/kg. The mean recoveries and repeatability of five ß-agonists in pork tissues varied from 70.0% to 116.0% and from 2.5% to 10.4%, respectively. The developed method was successfully applied to analysis of 22 real pork tissues samples.


Assuntos
Agonistas Adrenérgicos beta/análise , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Carne Vermelha/análise , Espectrometria de Massas em Tandem/métodos , Animais , Clembuterol/análise , Polímeros/química , Reprodutibilidade dos Testes , Suínos
8.
Materials (Basel) ; 7(7): 4878-4895, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-28788111

RESUMO

A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA