Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Front Microbiol ; 15: 1441142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351306

RESUMO

The bottled drinking water market has seen significant growth and diversification, yet the selection criteria lack scientific basis, as all must adhere to stringent health standards. Prior studies predominantly focused on chemical quality, with limited assessments of microbial quality using methods prone to underestimation. Moreover, insufficient research explores the impact of packaging materials and temperatures optimal for mesophilic growth on microbial quality. To understand the unique characteristics and justify the distinction among different types of bottled waters, a comprehensive analysis encompassing both chemical and microbiological aspects is imperative. Addressing these gaps, our study examines 19 diverse bottled water brands comprising purified, mineral, artesian, and sparkling water types from Saudi Arabia and abroad. Our findings reveal distinct chemical compositions among bottled waters, with notable variations across types. Flow cytometry analysis reveals significant differences in bacterial content among water types, with natural mineral waters having the highest concentrations and treated purified waters the lowest. Bacterial content in plastic-bottled mineral water suggests it may be higher than in glass-bottled water. Flow cytometry fingerprints highlight separate microbial communities for purified and mineral waters. Additionally, temperatures favorable for mesophilic growth reveal varying microbial responses among different types of bottled waters. Some variation is also observed in mineral water bottled in plastic versus glass, suggesting potential differences that warrant further investigation. 16S rRNA gene sequencing identifies unique microbial taxa among different mineral waters. Overall, our study underscores that all bottled waters meet health regulations. Furthermore, the combined chemical and microbial profiles may serve as authenticity indicators for distinct bottled water types. This study can serve as a basis for future research on the environmental impact of bottled water transportation, suggesting that locally produced water may offer a more sustainable option.

2.
J Theor Biol ; : 111953, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357598

RESUMO

Although microorganisms often live in dynamic environments, most studies, both experimental and theoretical, are carried out under static conditions. In this work, we investigate the issue of optimal resource allocation in bacteria growing in periodic environments. We consider a dynamic model describing the microbial metabolism under varying conditions, involving a control variable quantifying the protein precursors allocation. Our objective is to determine the optimal strategies maximizing the long-term growth of cells under a piecewise-constant periodic environment. Firstly, we perform a theoretical analysis of the resulting optimal control problem (OCP), based on the application the Pontryagin's Maximum Principle (PMP). We determine that the structure of the optimal control must be bang-bang, with possibly some singular arcs corresponding to optimal equilibria of the system. If the control presents singular arcs, then these can only be reached and left through chattering arcs. We also use a direct optimization method, implemented in the BOCOP software, to solve the studied OCP. Our study reveals that the optimal solution over a large time horizon is related to the one over a single period of the varying environment with periodic constraints. Moreover, we observe that the maximal average growth rate attainable under periodic conditions can be higher than the one under a constant environment. We further extend our analysis to conduct a qualitative comparison between the predictions from our model and some recent biological experiments on E. coli. This analysis particularly highlights the mechanisms of action of the ppGpp signaling molecule, thus providing relevant explanations of the experimental observations. In conclusion, our study corroborates previous research indicating that this molecule plays a crucial role in the regulation of resource allocation of protein precursors in E. coli.

3.
Environ Sci Technol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390789

RESUMO

Plant roots and associated microbes release a diverse range of functionally distinct exudates into the surrounding rhizosphere with direct impacts on soil carbon storage, nutrient availability, and contaminant dynamics. Yet mechanistic linkages between root exudation and emergent biogeochemical processes remain challenging to measure nondestructively, in real soil, over time. Here we used a novel combination of in situ microsensors with high-resolution mass spectrometry to measure, nondestructively, changing exudation and associated biogeochemical dynamics along single growing plant roots (Avena sativa). We found that metabolite and dissolved organic carbon (DOC) concentrations as well as microbial growth, redox potential (EH), and pH dynamics vary significantly among bulk soil, root tip, and more mature root zones. Surprisingly, the significant spike of rhizosphere DOC upon root tip emergence did not significantly correlate with any biogeochemical parameters. However, the presence of sugars significantly correlated with declines in EH following the arrival of the root tip, likely due to enhanced microbial oxygen demand. Similarly, the presence of organic acids significantly correlated to declines in pH upon root tip emergence. Overall, our in situ measurements highlight how different exudates released along growing roots create functionally distinct soil microenvironments that evolve over time.

4.
Foods ; 13(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39335900

RESUMO

Given the persistent occurrence of foodborne illnesses linked to both raw and processed vegetables, understanding microbial behavior in these foods under distribution conditions is crucial. This study aimed to develop predictive growth models for Salmonella spp. and Listeria monocytogenes in raw (mung bean sprouts, onion, and cabbage) and processed vegetables (shredded cabbage salad, cabbage and onion juices) at various temperatures, ranging from 4 to 36 °C. Growth models were constructed and validated using isolated strains of Salmonella spp. (S. Bareilly, S. Enteritidis, S. Typhimurium) and L. monocytogenes (serotypes 1/2a and 1/2b) from diverse food sources. The minimum growth temperatures for Salmonella varied among different vegetable matrices: 8 °C for mung bean sprouts, 9 °C for both onion and cabbage, and 10 °C for ready-to-eat (RTE) shredded cabbage salad. Both pathogens grew in cabbage juice at temperatures above 17 °C, while neither demonstrated growth in onion juice, even at 36 °C. Notably, Salmonella spp. exhibited faster growth than L. monocytogenes in all tested samples. At 8 °C, the lag time (LT) and specific growth rate (SGR) for Salmonella spp. in mung bean sprouts were approximately tenfold longer and threefold slower, respectively, compared to those at 10 °C. A decrease in refrigerator storage temperature by 1 or 2 degrees significantly prevented the growth of Salmonella in raw vegetables. These findings offer valuable insights into assessing the risk of foodborne illness associated with the consumption of raw and processed vegetables and inform management strategies in mitigating these risks.

5.
Heliyon ; 10(17): e36528, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263184

RESUMO

Deep-fried breaded tilapia nuggets (DFBTNs) have good market prospects as a tilapia deep-processed product. In this study, we used pre-optimized DFBTNs to simulate the mass change from storage to consumption and investigated the changes in storage shelf-life and frying mass transfer kinetics of DFBTNs. Microbial growth trend and shelf-life prediction models at different storage temperatures were developed using a modified Gompertz equation. The R2 of the fitted equations were all greater than 0.98, and the predicted shelf-life of the products was close to the actual measurement time. The ability of the electronic nose and tongue to differentiate between odor and taste can be used as a secondary indicator to determine whether a product is spoiled or not. During the reheating process of deep-frying, the batter shell moisture decreased (18.69 %→6.89 %), and the oil content increased (2.76 %→27.35 %). The mass transfer coefficient k fitted by Fick's second law for moisture evaporation was 0.0086, and the mass transfer coefficient k fitted by the first-order kinetic equation for oil absorption was 0.1137. This study is informative for storing and consuming DFBTNs, which can provide a basis for the deep processing and high-value utilization of tilapia.

6.
Clin Res Cardiol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256220

RESUMO

BACKGROUND AND OBJECTIVE: Transcatheter aortic valve replacement (TAVR) is an established treatment option for patients with symptomatic severe aortic stenosis across all stages of surgical risk. Rapid pacing during the procedure and the risk for the occurrence of conduction disturbances after TAVR requires the pre-interventional insertion of a temporary pacemaker (TP). However, this approach poses risks, including the risk of infection. For this reason, the following study aimed to investigate microbial growth on temporary pacemaker leads and its association with outcome post-TAVR and to identify associated pathogens and related risk factors. METHODS: A prospective study was conducted including 344 patients undergoing TAVR at the Heart Centre Bonn. Of these, 97 patients did not require TP leads as they already had permanent pacemakers; this group was considered as comparison group. The TP leads of the remaining 247 patients were removed, sonicated, and cultured to investigate bacterial growth over a period of 14 days. Finally, we compared patients without microbial growth (n = 184) and patients with microbial growth (n = 63). The primary endpoint of the study was 30-day all-cause mortality, secondary endpoints were periprocedural infections, the length of the postprocedural hospital stay, 30-day major vascular complications and the 30-day stroke rate. RESULTS: The majority of cases (74.5%) showed no bacterial growth. In the remaining cases (25.5%), diverse microorganisms were identified, mostly non-pathogenic bacteria. The statistical analysis revealed no significant differences between groups according to microbial growth in terms of 30-day mortality (p = 0.446), postprocedural hospital stay (p = 0.401), periprocedural infections (p = 0.434), 30-day major vascular complications (p = 1.0), and 30-day stroke rate (p = 1.0). Notably, the timing of sheath insertion was significantly associated with microbial growth; sheath placement more than 2 days prior to the procedure was associated with a significantly higher risk of microbial growth (OR: 2.1; 95% CI 1.1-4.3) (p = 0.030). CONCLUSIONS: The presence of temporary leads does not significantly impact clinical outcomes, irrespective of bacterial growth on the lead. However, the timing and duration of sheath placement plays a crucial role in contamination incidence. Thus, temporary leads/sheaths should be placed shortly before the procedure and removed promptly to reduce the risk of contamination/infection.

7.
Perfusion ; : 2676591241276572, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196790

RESUMO

BACKGROUND: Extracorporeal Membrane Oxygenation (ECMO) is a life support device for patients with severe heart and/or lung failure. Emergency situations require immediate ECMO response. Primed circuits have become a routine practice, as it may take 30-60 min to assemble and prime. There remains a lack of data to support the sterility of primed and stored ECMO circuits. This bench study assessed the impact of storage environment and priming solution on specific microbial growth of primed ECMO circuits. METHODS: Twelve adult ECMO circuits were tested for sterility for 56 days between September-December 2020. Circuits were assembled and primed in a perfusion lab in Chicago, IL. Six were stored in a sterile environment and six in a non-sterile environment, with three circuits primed using normal saline (NaCl) and three with Plasmalyte-A for each environment. Samples were collected on days 0, 3, 7, 14, 28, 42, and 56 in anaerobic bottle cultures testing for potential pathogen growth, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. RESULTS: Samples obtained from the 12 primed ECMO circuits demonstrated no microbial growth of S. aureus, P. aeruginosa, and E. coli in the bottle cultures. Similarly, there was no difference in the circuit sterility based on the storage environment (sterile vs nonsterile) or priming solution (NaCl vs Plasmalyte-A). CONCLUSION: Our findings showed that ECMO circuits can be primed for 56 days without evidence of the specified bacterial growth. Furthermore, the storage conditions and the prime utilized did not affect the sterility of the primed ECMO circuits.

8.
J Food Sci ; 89(10): 6335-6349, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39183691

RESUMO

In this study, the effects of ultrasound combined with ferulic acid (FA) on the quality of the Yesso scallop (Patinopecten yessoensis) adductor muscles (SAM) during refrigerated storage were investigated. The results demonstrated that the combined treatment with 350 W ultrasound and FA (UFA) significantly delayed enzyme activities and microbial growth in SAM tissues compared to FA treatment alone. After 6 days of cold storage, samples treated with UFA exhibited higher hardness (2850 g), lower thiobarbituric acid reactive substances (TBARS = 9.35 MDA mg/g SAM), and lower total volatile basic nitrogen (TVB-N = 19.75 mg/100 g SAM) values compared to control and FA-treated samples. Consequently, UFA treatment prolonged the shelf life of SAM by 3 days during storage at 4°C. Based on scanning electron microscopy and low-field nuclear magnetic resonance data, these findings are attributed to UFA treatment not only reducing the degradation of SAM tissue network structure but also minimizing water loss. PRACTICAL APPLICATION: Scallop adductor muscle (SAM) is commonly considered a delicacy owing to its unique mouthfeel and delicious taste. However, owing to its high moisture content and high levels of various nutrients, SAM has a short shelf life. In this work, a combination of ultrasound with ferulic acid (UFA) has been found to have effective preservation effects on SAM during refrigerated storage. Our study findings pave the way for a potential approach to maintain scallop quality during processing and storage. Moreover, our study also provides some theoretical basis for using and promoting these technologies in aquatic products.


Assuntos
Ácidos Cumáricos , Conservação de Alimentos , Pectinidae , Ácidos Cumáricos/análise , Pectinidae/química , Animais , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Alimentos Marinhos/análise , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Manipulação de Alimentos/métodos , Ultrassom/métodos
9.
Water Res ; 263: 122155, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088881

RESUMO

With widespread occurrence and increasing concern of emerging contaminants (CECs) in source water, biologically active filters (BAF) have been gaining acceptance in water treatment. Both BAFs and graphene oxide (GO) have been shown to be effective in treating CECs. However, studies to date have not addressed interactions between GO and microbial communities in water treatment processes such as BAFs. Therefore, in the present study, we investigated the effect of GO on the properties and microbial growth rate in a BAF system. Synthesized GO was characterized with a number of tools, including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectrometry. GO exhibited the characteristic surface functional groups (i.e., C-OH, C=O, C-O-C, and COOH), crystalline structure, and sheet-like morphology. To address the potential toxicity of GO on the microbial community, reactive oxygen species (ROS) generation was measured using nitro blue tetrazolium (NBT) assay. Results revealed that during the exponential growth phase, ROS generation was not observed in the presence of GO compared to the control batch. In fact, the adenosine triphosphate (ATP) concentrations increased in the presence of GO (25 µg/L - 1000 µg/L) compared to the control without GO. The growth rate in systems with GO exceeded the control by 20 % to 46 %. SEM images showed that GO sheets can form an effective scaffold to promote bacterial adhesion, proliferation, and biofilm formation, demonstrating its biocompatibility. Next-generation sequencing (Illumina MiSeq) was used to characterize the BAF microbial community, and high-throughput sequencing analysis confirmed the greater richness and more diverse microbial communities compared to systems without GO. This study is the first to report the effect of GO on the microbial community of BAF from a water treatment plant, which provides new insights into the potential of utilizing a bio-optimized BAF for advanced and sustainable water treatment or reuse strategies.


Assuntos
Grafite , Purificação da Água , Grafite/química , Purificação da Água/métodos , Filtração , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Glob Chang Biol ; 30(8): e17465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162612

RESUMO

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.


Assuntos
Ciclo do Carbono , Carbono , Microbiota , Microbiologia do Solo , Solo , Chile , Carbono/metabolismo , Carbono/análise , Solo/química , Fungos/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biomassa , Pradaria
11.
Adv Food Nutr Res ; 111: 71-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39103218

RESUMO

Meeting food safety requirements without jeopardizing quality attributes or sustainability involves adopting a holistic perspective of food products, their manufacturing processes and their storage and distribution practices. The virtualization of the food supply chain offers opportunities to evaluate, simulate, and predict challenges and mishaps potentially contributing to present and future food safety risks. Food systems virtualization poses several requirements: (1) a comprehensive framework composed of instrumental, digital, and computational methods to evaluate internal and external factors that impact food safety; (2) nondestructive and real-time sensing methods, such as spectroscopic-based techniques, to facilitate mapping and tracking food safety and quality indicators; (3) a dynamic platform supported by the Internet of Things (IoT) interconnectivity to integrate information, perform online data analysis and exchange information on product history, outbreaks, exposure to risky situations, etc.; and (4) comprehensive and complementary mathematical modeling techniques (including but not limited to chemical reactions and microbial inactivation and growth kinetics) based on extensive data sets to make realistic simulations and predictions possible. Despite current limitations in data integration and technical skills for virtualization to reach its full potential, its increasing adoption as an interactive and dynamic tool for food systems evaluation can improve resource utilization and rational design of products, processes and logistics for enhanced food safety. Virtualization offers affordable and reliable options to assist stakeholders in decision-making and personnel training. This chapter focuses on definitions and requirements for developing and applying virtual food systems, including digital twins, and their role and future trends in enhancing food safety.


Assuntos
Inocuidade dos Alimentos , Abastecimento de Alimentos , Humanos
12.
MethodsX ; 13: 102811, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022177

RESUMO

The time-consuming nature of culturing methods has urged the exploration of rapid modern technologies. One promising alternative utilizes redox potential, which describes the oxidative changes within complex media, indicating oxygen and nutrient consumption, as well as the production of reduced substances in the investigated biological system. Redox potential measurement can detect microbial activity within 16 h, what is significantly faster than the minimum 24 h incubation time of the reference plate counting technique. The redox potential based method can be specific with selective media, but bacterial strains have unique kinetic pattern as well. The proposed method suggests evaluation of the curve shape for the differentiation of environmental contaminant and pathogenic microbial strains. Six bacterial species were used in validation (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Listeria innocua, Listeria monocytogenes, and Listeria ivanovii). Descriptive parameters reached 98.2 % accuracy and Gompertz model achieved 91.6 % accuracy in classification of the selected 6 bacteria species.•Mathematical model (Gompertz function) and first order descriptive parameters are suggested to describe the specific shape of redox potential curves, while Support Vector Machine (SVM) is recommended for classification.•Due to the concentration dependent time to detection (TTD), pre-processing applies standardization according to the inflection point time.

13.
J Environ Manage ; 366: 121792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002459

RESUMO

Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.


Assuntos
Acil-Butirolactonas , Cádmio , Cádmio/metabolismo , Acil-Butirolactonas/metabolismo , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Bactérias/metabolismo , Biodegradação Ambiental , Percepção de Quorum , Fósforo/metabolismo , Nitrogênio/metabolismo
14.
Math Biosci Eng ; 21(5): 5972-5995, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38872566

RESUMO

We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.


Assuntos
Acetatos , Simulação por Computador , Geobacter , Modelos Biológicos , Oxirredução , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Acetatos/metabolismo , Algoritmos
15.
Microorganisms ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930495

RESUMO

The quality of poultry meat offered to the consumer depends mainly on the level of hygiene during all stages of its production, storage time, and temperature. This study investigated the effect of refrigerated storage on the microbiological contamination, color, and pH of turkey thigh muscles stored at 1 °C over six days. Microbial growth, including total mesophilic aerobes, presumptive lactic acid bacteria, and Enterobacteriaceae, significantly increased, impacting the meat's sensory attributes and safety. On the 6th day of meat storage, the content of total mesophilic aerobes, presumptive lactic acid bacteria, and Enterobacteriaceae was 1.82 × 107 CFU/g, 1.00 × 104 CFU/g, and 1.87 × 105 CFU/g, respectively. The stability of color was assessed by quantifying the total heme pigments, comparing myoglobin, oxymyoglobin, and metmyoglobin concentrations, analyzing color parameters L*, a*, b*, and the sensory assessment of surface color, showing a decline in total heme pigments, three myoglobin forms, redness (a*) and lightness (L*). In contrast, yellowness (b*) increased. These changes were correlated with the growth of spoilage microorganisms that influenced the meat's pigmentation and pH, with a notable rise in pH associated with microbial metabolization. Based on the conducted research, it was found that the maximum storage time of turkey thigh muscles at a temperature of 1 °C is 4 days. On the 4th day of storage, the total mesophilic aerobe content was 3.5 × 105 CFU/g. This study underscores the critical need for maintaining controlled refrigeration conditions to mitigate spoilage, ensuring food safety, and preserving turkey meat's sensory and nutritional qualities. There is a need for further research to improve turkey meat storage techniques under specific temperature conditions by studying the impact of using varying packaging materials (with different barrier properties) or the application of natural preservatives. Additionally, future studies could focus on evaluating the effectiveness of cold chain management practices to ensure the quality and safety of turkey products during storage. By addressing these research gaps, practitioners and researchers can contribute to developing more efficient and sustainable turkey meat supply chains, which may help mitigate food wastage by safeguarding the quality and safety of the meat.

16.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472816

RESUMO

Plasma-activated water (PAW) treatment is an effective technique for the quality retention of fresh vegetables with cold atmospheric plasma using controllable parameters. This study investigated the effect of PAW on the postharvest quality of shepherd's purse (Capsella bursa-pastoris). The results displayed that PAW treatment with an activation time of 5, 10, 15, and 20 min reduced the yellowing rate and weight loss of the shepherd's purse during 9 days of storage. Compared with untreated samples, PAW treatment at different times reduced the number of total bacteria, coliform, yeast, and mold by 0.18-0.94, 0.59-0.97, 0.90-1.18, and 1.03-1.17 Log CFU/g after 9 days of storage, respectively. Additionally, the treatments with PAW-5 and PAW-10 better preserved ascorbic acid, chlorophyll, total phenol, and total flavonoid contents. They also maintained the higher antioxidant and CAT activity and inhibited the formation of terpenes, alcohols, and nitrogen oxide compounds of the shepherd's purse at the end of storage. The microstructural result illustrated that the cells of the shepherd's purse treated with PAW-5 and PAW-10 were relatively intact, with a small intercellular space after storage. This study demonstrated that PAW treatment effectively improved the postharvest quality of shepherd's purse.

17.
Microbiol Spectr ; 12(5): e0365023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501820

RESUMO

Anaerobic microbes play crucial roles in environmental processes, industry, and human health. Traditional methods for monitoring the growth of anaerobes, including plate counts or subsampling broth cultures for optical density measurements, are time and resource-intensive. The advent of microplate readers revolutionized bacterial growth studies by enabling high-throughput and real-time monitoring of microbial growth kinetics. Yet, their use in anaerobic microbiology has remained limited. Here, we present a workflow for using small-footprint microplate readers and the Growthcurver R package to analyze the kinetic growth metrics of anaerobic bacteria. We benchmarked the small-footprint Cerillo Stratus microplate reader against a BioTek Synergy HTX microplate reader in aerobic conditions using Escherichia coli DSM 28618 cultures. The growth rates and carrying capacities obtained from the two readers were statistically indistinguishable. However, the area under the logistic curve was significantly higher in cultures monitored by the Stratus reader. We used the Stratus to quantify the growth responses of anaerobically grown E. coli and Clostridium bolteae DSM 29485 to different doses of the toxin sodium arsenite. The growth of E. coli and C. bolteae was sensitive to arsenite doses of 1.3 µM and 0.4 µM, respectively. Complete inhibition of growth was achieved at 38 µM arsenite for C. bolteae and 338 µM in E. coli. These results show that the Stratus performs similarly to a leading brand of microplate reader and can be reliably used in anaerobic conditions. We discuss the advantages of the small format microplate readers and our experiences with the Stratus. IMPORTANCE: We present a workflow that facilitates the production and analysis of growth curves for anaerobic microbes using small-footprint microplate readers and an R script. This workflow is a cost and space-effective solution to most high-throughput solutions for collecting growth data from anaerobic microbes. This technology can be used for applications where high throughput would advance discovery, including microbial isolation, bioprospecting, co-culturing, host-microbe interactions, and drug/toxin-microbial interactions.


Assuntos
Bactérias Anaeróbias , Escherichia coli , Ensaios de Triagem em Larga Escala , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Anaerobiose , Cinética
18.
Glob Chang Biol ; 30(2): e17184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375609

RESUMO

Energy is the driver of all microbial processes in soil. The changes in Gibbs energy are equal to the enthalpy changes during all processes in soil because these processes are ongoing under constant pressure and volume-without work generation. The enthalpy change by transformation of individual organic compounds or of complex organic matter in soil can be exactly quantified by the nominal oxidation state of carbon changes. Consequently, microbial energy use efficiency can be assessed by the complete combustion enthalpy of organic compounds when microorganisms use O2 as the terminal electron acceptor for microbial processes under aerobic conditions.


Assuntos
Compostos Orgânicos , Solo , Oxirredução , Termodinâmica , Microbiologia do Solo , Carbono
19.
Biotechnol Adv ; 72: 108335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417562

RESUMO

The Gompertz model, initially proposed for human mortality rates, has found various applications in growth analysis across the biotechnological field. This paper presents a comprehensive review of the Gompertz model's applications in the biotechnological field, examining its past, present, and future. The past of the Gompertz model was examined by tracing its origins to 1825, and then it underwent various modifications throughout the 20th century to increase its applicability in biotechnological fields. The Zwietering-modified version has proven to be a versatile tool for calculating the lag-time and maximum growth rate/quantity in microbial growth. In addition, the present applications of the Gompertz model to microbial growth kinetics and bioproduction (e.g., hydrogen, methane, caproate, butanol, and hexanol production) kinetics have been comprehensively summarized and discussed. We highlighted the importance of standardized citations and guidance on model selection. The Zwietering-modified Gompertz model and the Lay-modified Gompertz model are recommended for describing microbial growth kinetics and bioproduction kinetics, recognized for their widespread use and provision of valuable kinetics information. Finally, in response to the current Gompertz models' focus on internal mortality, the modified Makeham-Gompertz models that consider both internal/external mortality were introduced and validated for microbial growth and bioproduction kinetics with good fitting performance. This paper provides a perspective of the Gompertz model and offers valuable insights that facilitate the diverse applications of this model in microbial growth and bioproduction kinetics.


Assuntos
Biotecnologia , Metano , Humanos , Cinética
20.
Food Chem X ; 21: 101209, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38384684

RESUMO

Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA