Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Sci Total Environ ; 948: 174596, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997023

RESUMO

The study embarked on a comprehensive examination of the evolution and diversity of microorganisms within long-term leachate pollution environments, with a focus on varying depths and levels of contamination, and its linkage to soil characteristics and the presence of heavy metals. It was observed that microbial diversity presented distinct cross-depth trend, where archaeal communities were found to be particularly sensitive to alterations in soil depth. Noteworthily, Euryarchaeota increased by 4.82 %, 7.64 % and 9.87 % compared with topsoil. The abundance of Tahumarchaeota was successively reduced by 5.79 %, 9.58 %, and 12.66 %. The bacterial community became more sensitive to leachate pollution, and the abundance of Protebacteria in contaminated soil decreased by 10.27 %, while the abundance of Firmicutes increased by 7.46 %. The bacterial genus Gemmobacter, Chitinophaga and Rheinheimera; the archaeal genus Methanomassiliicoccus and Nitrosopumilus; along with the fungal genus Goffeauzyma, Gibberella, and Setophaeosphaeria emerged as pivotal biological markers for their respective domains, underpinning the biogeochemical dynamics of these environments. Furthermore, the study highlighted that geochemical factors, specifically nitrate (NO3--N) levels and humic acid (HA) fractions, played crucial roles in modulating the composition and metabolic potential of these communities. Predictive analyses of functional potentials suggested that the N functional change of archaea was more pronounced, with anaerobic ammonia oxidation and nitrification decreased by 15.78 % and 14.62 %, respectively. Overall, soil characteristics alone explained 57.9 % of the total variation in the bacterial community structure. For fungal communities within contaminated soil, HMs were the primary contributors, explaining 46.9 % of the variability, while soil depth accounting for 6.4 % of the archaeal variation. This research enriches the understanding of the complex interrelations between heavy metal pollution, soil attributes, and microbial communities, paving the way for informed strategies in managing informal landfill sites effectively.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38952008

RESUMO

Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remain poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through the subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.


Assuntos
Rizosfera , Solanum lycopersicum , Ácido Succínico , Solanum lycopersicum/microbiologia , Ácido Succínico/metabolismo , Interações Microbianas , Microbiologia do Solo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pseudomonas putida/crescimento & desenvolvimento
3.
Vavilovskii Zhurnal Genet Selektsii ; 28(3): 276-287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38952706

RESUMO

Beneficial endophytic bacteria can suppress the development of insect pests through direct antagonism, with the help of metabolites, or indirectly by the induction of systemic resistance through the regulation of hormonal signaling pathways. Lipopeptides are bacterial metabolites that exhibit direct antagonistic activity against many organisms, including insects. Also, lipopeptides are able to trigger induced systemic resistance (ISR) in plants against harmful organisms, but the physiological mechanisms of their action are just beginning to be studied. In this work, we studied ten strains of bacteria isolated from the tissues of wheat and potatoes. Sequencing of the 16S rRNA gene showed that all isolates belong to the genus Bacillus and to two species, B. subtilis and B. velezensis. The genes for lipopeptide synthetase - surfactin synthetase (Bs_srf ), iturin synthetase (Bs_ituA, Bs_ituB) and fengycin synthetase (Bs_fenD) - were identified in all bacterial isolates using PCR. All strains had high aphicidal activity against the Greenbug aphid (Schizaphis graminum Rond.) due to the synthesis of lipopeptides, which was proven using lipopeptide-rich fractions (LRFs) isolated from the strains. Endophytic lipopeptide-synthesizing strains of Bacillus spp. indirectly affected the viability of aphids, the endurance of plants against aphids and triggered ISR in plants, which manifested itself in the regulation of oxidative metabolism and the accumulation of transcripts of the Pr1, Pr2, Pr3, Pr6 and Pr9 genes due to the synthesis of lipopeptides, which was proven using LRF isolated from three strains: B. subtilis 26D, B. subtilis 11VM, and B. thuringiensis B-6066. We have for the first time demonstrated the aphicidal effect of fengycin and the ability of the fengycin-synthesizing strains and isolates, B. subtilis Ttl2, Bacillus sp. Stl7 and B. thuringiensis B-6066, to regulate components of the pro-/antioxidant system of aphid-infested plants. In addition, this work is the first to demonstrate an elicitor role of fengycin in triggering a systemic resistance to S. graminum in wheat plants. We have discovered new promising strains and isolates of endophytes of the genus Bacillus, which may be included in the composition of new biocontrol agents against aphids. One of the criteria for searching for new bacteria active against phloem-feeding insects can be the presence of lipopeptide synthetase genes in the bacterial genome.

4.
Indian J Microbiol ; 64(2): 603-617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39011022

RESUMO

The human microbiome is a diverse consortium of microbial kingdoms that play pivotal roles in host health and diseases. We previously reported a dysbiotic bacteriome in chronic pancreatitis patients with diabetes (CPD) compared with patients with it's nondiabetic (CPND) phenotype. In this study, we extended our exploration to elucidate the intricate interactions between the mycobiome, bacteriome, and hosts' plasma metabolome with the disease phenotypes. A total of 25 participants (CPD, n = 7; CPND, n = 10; healthy control, n = 8) were recruited for the study. We observed elevated species richness in both the bacterial and fungal profiles within the CP diabetic cohort compared to the nondiabetic CP phenotype and healthy control cohorts. Notably, the CP group displayed heterogeneous fungal diversity, with only 40% of the CP nondiabetic patients and 20% of the CP diabetic patients exhibiting common core gut fungal profiles. Specific microbial taxa alterations were identified, including a reduction in Bifidobacterium adolescentis and an increase in the prevalence of Aspergillus penicilloides and Klebsiella sp. in the disease groups. In silico analysis revealed the enrichment of pathways related to lipopolysaccharide (LPS), apoptosis, and peptidase, as well as reduced counts of the genes responsible for carbohydrate metabolism in the CP groups. Additionally, distinct plasma metabolome signatures were observed, with CPD group exhibiting higher concentrations of sugars and glycerolipids, while the CPND cohort displayed elevated levels of amino acids in their blood. The fatty acid-binding protein (FABP) concentration was notably greater in the CPD group than in the HC group (4.220 vs. 1.10 ng/ml, p = 0.04). Furthermore, compared with healthy controls, disease groups exhibited fewer correlations between key fungal taxa (Aspergillus sp., Candida sp.) and bacterial taxa (Prevotella copri, Bifidobacteria sp., Rumminococcaceae). Our study unveils, for the first time, a dysbiotic mycobiome and emphasizes unique host bacterial-mycobial interactions in CP patient with diabetes, potentially influencing disease severity. These findings provide crucial insights for future mechanistic studies aiming to unravel the determinants of disease severity in this complex clinical context. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01207-8.

5.
Microorganisms ; 12(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065164

RESUMO

Microorganisms have significant potential to control fungal contamination in various foods. However, the identification of strains that exhibit robust antifungal activity poses challenges due to highly context-dependent responses. Therefore, to fully exploit the potential of isolates as antifungal agents, it is crucial to systematically evaluate them in a variety of biotic and abiotic contexts. Here, we present an adaptable and scalable method using a robotic platform to study the properties of 1022 isolates obtained from maple sap. We tested the antifungal activity of isolates alone or in pairs on M17 + lactose (LM17), plate count agar (PCA), and sucrose-allantoin (SALN) culture media against Kluyveromyces lactis, Candida boidinii, and Saccharomyces cerevisiae. Microorganisms exhibited less often antifungal activity on SALN and PCA than LM17, suggesting that the latter is a better screening medium. We also analyzed the results of ecological interactions between pairs. Isolates that showed consistent competitive behaviors were more likely to show antifungal activity than expected by chance. However, co-culture rarely improved antifungal activity. In fact, an interaction-mediated suppression of activity was more prevalent in our dataset. These findings highlight the importance of incorporating both biotic and abiotic factors into systematic screening designs for the bioprospection of microorganisms with environmentally robust antifungal activity.

6.
Foods ; 13(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39063297

RESUMO

The mechanism of metabolites produced by lactic acid bacteria in mediating microbial interactions has been difficult to ascertain. This study comparatively evaluated the antimicrobial effect of the novel bacterium Pediococcus acidilactici CCFM18 and explored the global chemical view of its interactions with indicator bacteria. P. acidilactici CCFM18 had sufficiently strong antimicrobial activity to effectively inhibit the growth of the indicator bacteria and enhance their intracellular reactive oxygen species (ROS) level. The emerging technique of matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) imaging mass spectrometry indicated that P. acidilactici CCFM18 increased the production of pediocin PA-1 and the penocin A profile during its interaction with the indicator bacteria, thus differing from P. acidilactici CCFM28 (a commonly used laboratory strain). Strikingly, the production of coagulin A was triggered only by signaling molecules made by the competing strain L. thermophilus, suggesting an idiosyncratic response from P. acidilactici CCFM18. Bioinformatic mining of the P. acidilactici CCFM18 draft genome sequence revealed gene loci that code for the complex secondary metabolites analyzed via MSI. Taken together, these results illustrate that chemical interactions between P. acidilactici CCFM18 and indicator bacteria exhibit high complexity and specificity and can drive P. acidilactici CCFM18 to produce different secondary metabolites.

7.
mSystems ; 9(7): e0070923, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38856205

RESUMO

The occurrence of cyanobacterial harmful algal blooms (cyanoHABs) is related to their physical and chemical environment. However, less is known about their associated microbial interactions and processes. In this study, cyanoHABs were analyzed as a microbial ecosystem, using 1 year of 16S rRNA sequencing and 70 metagenomes collected during the bloom season from Lake Okeechobee (Florida, USA). Biogeographical patterns observed in microbial community composition and function reflected ecological zones distinct in their physical and chemical parameters that resulted in bloom "hotspots" near major lake inflows. Changes in relative abundances of taxa within multiple phyla followed increasing bloom severity. Functional pathways that correlated with increasing bloom severity encoded organic nitrogen and phosphorus utilization, storage of nutrients, exchange of genetic material, phage defense, and protection against oxidative stress, suggesting that microbial interactions may promote cyanoHAB resilience. Cyanobacterial communities were highly diverse, with picocyanobacteria ubiquitous and oftentimes most abundant, especially in the absence of blooms. The identification of novel bloom-forming cyanobacteria and genomic comparisons indicated a functionally diverse cyanobacterial community with differences in its capability to store nitrogen using cyanophycin and to defend against phage using CRISPR and restriction-modification systems. Considering blooms in the context of a microbial ecosystem and their interactions in nature, physiologies and interactions supporting the proliferation and stability of cyanoHABs are proposed, including a role for phage infection of picocyanobacteria. This study displayed the power of "-omics" to reveal important biological processes that could support the effective management and prediction of cyanoHABs. IMPORTANCE: Cyanobacterial harmful algal blooms pose a significant threat to aquatic ecosystems and human health. Although physical and chemical conditions in aquatic systems that facilitate bloom development are well studied, there are fundamental gaps in the biological understanding of the microbial ecosystem that makes a cyanobacterial bloom. High-throughput sequencing was used to determine the drivers of cyanobacteria blooms in nature. Multiple functions and interactions important to consider in cyanobacterial bloom ecology were identified. The microbial biodiversity of blooms revealed microbial functions, genomic characteristics, and interactions between cyanobacterial populations that could be involved in bloom stability and more coherently define cyanobacteria blooms. Our results highlight the importance of considering cyanobacterial blooms as a microbial ecosystem to predict, prevent, and mitigate them.


Assuntos
Bacteriófagos , Cianobactérias , Proliferação Nociva de Algas , Cianobactérias/virologia , Cianobactérias/genética , Bacteriófagos/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma , Lagos/microbiologia , Lagos/virologia , Genômica , Biodiversidade
8.
Compr Rev Food Sci Food Saf ; 23(4): e13388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865218

RESUMO

Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.


Assuntos
Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Microbiota , Qualidade dos Alimentos , Bactérias
9.
10.
Compr Rev Food Sci Food Saf ; 23(4): e13364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847746

RESUMO

Kefir milk, known for its high nutritional value and health benefits, is traditionally produced by fermenting milk with kefir grains. These grains are a complex symbiotic community of lactic acid bacteria, acetic acid bacteria, yeasts, and other microorganisms. However, the intricate coexistence mechanisms within these microbial colonies remain a mystery, posing challenges in predicting their biological and functional traits. This uncertainty often leads to variability in kefir milk's quality and safety. This review delves into the unique structural characteristics of kefir grains, particularly their distinctive hollow structure. We propose hypotheses on their formation, which appears to be influenced by the aggregation behaviors of the community members and their alliances. In kefir milk, a systematic colonization process is driven by metabolite release, orchestrating the spatiotemporal rearrangement of ecological niches. We place special emphasis on the dynamic spatiotemporal changes within the kefir microbial community. Spatially, we observe variations in species morphology and distribution across different locations within the grain structure. Temporally, the review highlights the succession patterns of the microbial community, shedding light on their evolving interactions.Furthermore, we explore the ecological mechanisms underpinning the formation of a stable community composition. The interplay of cooperative and competitive species within these microorganisms ensures a dynamic balance, contributing to the community's richness and stability. In kefir community, competitive species foster diversity and stability, whereas cooperative species bolster mutualistic symbiosis. By deepening our understanding of the behaviors of these complex microbial communities, we can pave the way for future advancements in the development and diversification of starter cultures for food fermentation processes.


Assuntos
Kefir , Simbiose , Kefir/microbiologia , Simbiose/fisiologia , Microbiota/fisiologia , Fermentação , Microbiologia de Alimentos
11.
Environ Pollut ; 356: 124346, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852663

RESUMO

Triclocarban (TCC) and its metabolite, 3,4-dichloroaniline (DCA), are classified as emerging organic contaminants (EOCs). Significant concerns arise from water and soil contamination with TCC and its metabolites. These concerns are especially pronounced at high concentrations of up to approximately 20 mg/kg dry weight, as observed in wastewater treatment plants (WWTPs). Here, a TCC-degrading co-culture system comprising Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 was utilized to degrade TCC (14.5 mg/L) by 85.9% in 7 days, showing improved degradation efficiency compared with monocultures. A combination of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), genome sequencing, transcriptomic analysis, and quantitative reverse transcription-PCR (qRT-PCR) was performed. Meanwhile, through the combination of further experiments involving heterologous expression and gene knockout, we proposed three TCC metabolic pathways and identified four key genes (tccG, tccS, phB, phL) involved in the TCC degradation process. Moreover, we revealed the internal labor division patterns and connections in the co-culture system, indicating that TCC hydrolysis products were exchanged between co-cultured strains. Additionally, mutualistic cooperation between BX2 and LY-1 enhances TCC degradation efficiency. Finally, phytotoxicity assays confirmed a significant reduction in the plant toxicity of TCC following synergistic degradation by two strains. The in-depth understanding of the TCC biotransformation mechanisms and microbial interactions provides useful information for elucidating the mechanism of the collaborative biodegradation of various contaminants.

12.
Trends Ecol Evol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38910081

RESUMO

Soil microbial communities play pivotal roles in maintaining soil health in agroecosystems. However, how the delivery of multiple microbial functions in agroecosystems is maintained remains poorly understood. This may put us at risk of incurring unexpected trade-offs between soil functions. We elucidate how interactions between soil microbes can lead to trade-offs in the functioning of agricultural soils. Interactions within soil microbial communities can result in not only positive but also neutral and negative relationships among soil functions. Altering soil conditions through soil health-improving agricultural management can alleviate these functional trade-offs by promoting the diversity and interrelationships of soil microbes, which can help to achieve more productive and sustainable agroecosystems.

13.
J Sci Food Agric ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922891

RESUMO

BACKGROUND: Saccharomyces cerevisiae CECA was a potential indigenous Chinese wine yeast that can produce aroma and flavor in Cabernet Sauvignon wines. High-throughput sequencing combined with metabolite analysis was applied to analyze the effects of CECA inoculation on the native microbial community interaction and metabolism during Cabernet Sauvignon wine fermentation. RESULTS: Fermentations were performed with three different inoculant strategies: spontaneous fermentation without inoculation, inoculation with CECA after grape must sterilization, and direct inoculation of CECA. Results showed that the diversity of bacteria (P = 0.033) is more sensitive to CECA inoculation than fungi (P = 0.563). In addition, CECA inoculation altered the species composition of core microorganisms (relative abundance >1%) and the keystone species (accounting for the top 1% of the most important interactions), as well as of the biomarkers (linear discriminant analysis > 3.0, P < 0.05). Furthermore, the inoculation could change the cluster of metabolites, and these differential metabolite sets were correlated with four fungal taxa of Issatchenkia, Issatchenkia orientalis, Saccharomycetales, Saccharomycetes and two bacterial taxa of Pantoea, Tatumella ptyseos, were significantly correlated. Inoculated fermentation also altered the correlation between dominant microorganisms and aroma compounds, giving Cabernet Sauvignon wines more herbal, floral, fruity, and cheesy aromas. CONCLUSION: Saccharomyces cerevisiae CECA and dimethyl dicarbonate (DMDC) inhibition treatments significantly altered the microbial community structure of Cabernet Sauvignon wines, which in turn affected the microbial-metabolite correlation. These findings will help winemakers to control the microbial dynamics and functions during wine fermentation, and be more widely used in regional typical wine fermentations. © 2024 Society of Chemical Industry.

14.
Bioresour Technol ; 406: 131049, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942211

RESUMO

Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.


Assuntos
Técnicas de Cocultura , Técnicas de Cocultura/métodos , Consórcios Microbianos/fisiologia , Interações Microbianas/fisiologia , Bactérias/metabolismo
15.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38874164

RESUMO

The role of antagonistic secondary metabolites produced by Pseudomonas protegens in suppression of soil-borne phytopathogens has been clearly documented. However, their contribution to the ability of P. protegens to establish in soil and rhizosphere microbiomes remains less clear. Here, we use a four-species synthetic community (SynCom) in which individual members are sensitive towards key P. protegens antimicrobial metabolites (DAPG, pyoluteorin, and orfamide A) to determine how antibiotic production contributes to P. protegens community invasion and to identify community traits that counteract the antimicrobial effects. We show that P. protegens readily invades and alters the SynCom composition over time, and that P. protegens establishment requires production of DAPG and pyoluteorin. An orfamide A-deficient mutant of P. protegens invades the community as efficiently as wildtype, and both cause similar perturbations to community composition. Here, we identify the microbial interactions underlying the absence of an orfamide A mediated impact on the otherwise antibiotic-sensitive SynCom member, and show that the cyclic lipopeptide is inactivated and degraded by the combined action of Rhodococcus globerulus D757 and Stenotrophomonas indicatrix D763. Altogether, the demonstration that the synthetic community constrains P. protegens invasion by detoxifying its antibiotics may provide a mechanistic explanation to inconsistencies in biocontrol effectiveness in situ.


Assuntos
Biotransformação , Pseudomonas , Metabolismo Secundário , Microbiologia do Solo , Pseudomonas/metabolismo , Pseudomonas/genética , Rizosfera , Microbiota , Interações Microbianas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fenóis , Floroglucinol/análogos & derivados , Pirróis
16.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930503

RESUMO

The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.

17.
Ecol Lett ; 27(5): e14433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712704

RESUMO

The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.


Assuntos
Microbiota , Benzamidas , Interações Microbianas , Phyllobacteriaceae/fisiologia , Água Subterrânea/microbiologia , Biodiversidade
18.
New Phytol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719779

RESUMO

Plants naturally harbor diverse microbiomes that can dramatically impact their health and productivity. However, it remains unclear how fungal microbiome diversity, especially in the phyllosphere, impacts intermicrobial interactions and consequent nonadditive effects on plant productivity. Combining manipulative experiments, field collections, culturing, microbiome sequencing, and synthetic consortia, we experimentally tested for the first time how foliar fungal community diversity impacts plant productivity. We inoculated morning glories (Ipomoea hederifolia L.) with 32 phyllosphere consortia of either low or high diversity or with single fungal taxa, and measured effects on plant productivity and allocation. We found the following: (1) nonadditive effects were pervasive with 56% of fungal consortia interacting synergistically or antagonistically to impact plant productivity, including some consortia capable of generating acute synergism (e.g. > 1000% increase in productivity above the additive expectation), (2) interactions among 'commensal' fungi were responsible for this nonadditivity in diverse consortia, (3) synergistic interactions were approximately four times stronger than antagonistic effects, (4) fungal diversity affected the magnitude but not frequency or direction of nonadditivity, and (5) diversity affected plant performance nonlinearly with the highest performance in low-diversity treatments. These findings highlight the importance of interpreting plant-microbiome interactions under a framework that incorporates intermicrobial interactions and nonadditive outcomes to understand natural complexity.

19.
Cell ; 187(12): 3108-3119.e30, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776921

RESUMO

The many functions of microbial communities emerge from a complex web of interactions between organisms and their environment. This poses a significant obstacle to engineering microbial consortia, hindering our ability to harness the potential of microorganisms for biotechnological applications. In this study, we demonstrate that the collective effect of ecological interactions between microbes in a community can be captured by simple statistical models that predict how adding a new species to a community will affect its function. These predictive models mirror the patterns of global epistasis reported in genetics, and they can be quantitatively interpreted in terms of pairwise interactions between community members. Our results illuminate an unexplored path to quantitatively predicting the function of microbial consortia from their composition, paving the way to optimizing desirable community properties and bringing the tasks of predicting biological function at the genetic, organismal, and ecological scales under the same quantitative formalism.


Assuntos
Microbiologia Ambiental , Epistasia Genética , Consórcios Microbianos , Biologia Sintética , Interações Microbianas , Bioengenharia
20.
Cell Host Microbe ; 32(6): 1025-1036.e5, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38795710

RESUMO

The extent to which bacterial lipids produced by the gut microbiota penetrate host tissues is unclear. Here, we combined mass spectrometry approaches to identify lipids produced by the human gut symbiont Bacteroides thetaiotaomicron (B. theta) and spatially track these bacterial lipids in the mouse colon. We characterize 130 B. theta lipids by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using wild-type and mutant B. theta strains to confidently identify lipid structures and their interconnected pathways in vitro. Of these, 103 B. theta lipids can be detected and spatially mapped in a single MALDI mass spectrometry imaging run. We map unlabeled bacterial lipids across colon sections of germ-free and specific-pathogen-free (SPF) mice and mice mono-colonized with wild-type or sphingolipid-deficient (BTMUT) B. theta. We observe co-localization of bacterially derived phosphatidic acid with host tissues in BTMUT mice, consistent with lipid penetration into host tissues. These results indicate limited and selective transfer of bacterial lipids to the host.


Assuntos
Bacteroides thetaiotaomicron , Colo , Microbioma Gastrointestinal , Lipidômica , Animais , Camundongos , Bacteroides thetaiotaomicron/metabolismo , Microbioma Gastrointestinal/fisiologia , Colo/microbiologia , Colo/metabolismo , Lipídeos/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolismo dos Lipídeos , Vida Livre de Germes , Organismos Livres de Patógenos Específicos , Ácidos Fosfatídicos/metabolismo , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA