Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Differentiation ; : 100813, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39327214

RESUMO

The Fibroblast growth factor (FGFs) family consists of at least 22 members that exert their function by binding and activating fibroblast growth factor receptors (FGFRs). The Fgf8/FgfD subfamily member, Fgf17, is located on human chromosome 8p21.3 and mouse chromosome 14 D2. In humans, FGF17 can be alternatively spliced to produce two isoforms (FGF17a and b) whereas three isoforms are present in mice (Fgf17a, b, and c), however, only Fgf17a and Fgf17b produce functional proteins. Fgf17 is a secreted protein with a cleavable N-terminal signal peptide and contains two binding domains, namely a conserved core region and a heparin binding site. Fgf17 mRNA is expressed in a wide range of different tissues during development, including the rostral patterning centre, midbrain-hindbrain boundary, tailbud mesoderm, olfactory placode, mammary glands, and smooth muscle precursors of major arteries. Given its broad expression pattern during development, it is surprising that adult Fgf17-/- mice displayed a rather mild phenotype; such that mutants only exhibited morphological changes in the frontal cortex and mid/hind brain boundary and changes in certain social behaviours. In humans, FGF17 mutations are implicated in several diseases, including Congenital Hypogonadotropic Hypogonadism and Kallmann Syndrome. FGF17 mutations contribute to CHH/KS in 1.1% of affected individuals, often presenting in conjunction with mutations in other FGF pathway genes like FGFR1 and FLRT3. FGF17 mutations were also identified in patients diagnosed with Dandy-Walker malformation and Pituitary Stalk Interruption Syndrome, however, it remains unclear how FGF17 is implicated in these diseases. Altered FGF17 expression has been observed in several cancers, including prostate cancer, hematopoietic cancers (acute myeloid leukemia and acute lymphoblastic leukemia), glioblastomas, perineural invasion in cervical cancer, and renal cell carcinomas. Furthermore, FGF17 has demonstrated neuroprotective effects, particularly during ischemic stroke, and has been shown to improve cognitive function in ageing mice.

2.
Cells Dev ; 179: 203933, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908828

RESUMO

Using a transgenic zebrafish line harboring a heat-inducible dominant-interference pou5f3 gene (en-pou5f3), we reported that this PouV gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of pou5f3 reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of en-pou5f3 induction on isthmus development during embryogenesis. When en-pou5f3 was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers -- such as pax2a, fgf8a, wnt1, and gbx2 -- was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after en-pou5f3 induction at late gastrulation, pax2a, fgf8a, and wnt1 were immediately and irreversibly downregulated, whereas the expression of en2a and gbx2 was reduced only weakly and slowly. Induction of en-pou5f3 at early somite stages also immediately downregulated MHB genes, particularly pax2a, but their expression was restored later. Overall, the data suggested that pou5f3 directly upregulates at least pax2a and possibly fgf8a and wnt1, which function in parallel in establishing the MHB, and that the role of pou5f3 dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of pax2a using both in vitro and in vivo reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by PouV through direct regulation of pax2/pax2a in vertebrate embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição PAX2 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Fator de Transcrição PAX2/metabolismo , Fator de Transcrição PAX2/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Gastrulação/genética , Animais Geneticamente Modificados , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Embrião não Mamífero/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Desenvolvimento Embrionário/genética , Mesencéfalo/metabolismo , Mesencéfalo/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Somitos/metabolismo , Somitos/embriologia , Fatores de Crescimento de Fibroblastos
3.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370799

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ~30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe the first zebrafish model of SHH MB using CRISPR to mutate ptch1, the primary genetic driver in human SHH MB. These tumors rapidly arise adjacent to the valvula cerebelli and resemble human SHH MB by histology and comparative genomics. In addition, ptch1-deficient MB tumors with loss of tp53 have aggressive tumor histology and significantly worse survival outcomes, comparable to human patients. The simplicity and scalability of the ptch1 MB model makes it highly amenable to CRISPR-based genome editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the grk3 kinase as one such target.

4.
Stem Cell Reports ; 18(11): 2240-2253, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922914

RESUMO

In early vertebrate development, organizer regions-groups of cells that signal to and thereby influence neighboring cells by secreted morphogens-play pivotal roles in the establishment and maintenance of cell identities within defined tissue territories. The midbrain-hindbrain organizer drives regionalization of neural tissue into midbrain and hindbrain territories with fibroblast growth factor 8 (FGF8) acting as a key morphogen. This organizer has been extensively studied in chicken, mouse, and zebrafish. Here, we demonstrate the enrichment of FGF8-expressing cells from human pluripotent stem cells (hPSCs), cultured as attached embryoid bodies using antibodies that recognize "Similar Expression to Fgf" (SEF) and Frizzled proteins. The arrangement of cells in embryoid body subsets of these cultures and the gene expression profile of the FGF8-expressing population show certain similarities to the midbrain-hindbrain organizer in animal models. In the embryonic chick brain, the enriched cell population induces formation of midbrain structures, consistent with FGF8-organizing capability.


Assuntos
Proteínas de Homeodomínio , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Galinhas/metabolismo , Mesencéfalo/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento de Fibroblastos/metabolismo , Padronização Corporal
5.
Gene Expr Patterns ; 46: 119286, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341978

RESUMO

Foxl2 plays conserved central function in ovarian differentiation and maintenance in several fish species. However, its expression pattern and function in fish embryogenesis are still largely unknown. In this study, we first presented a sequential expression pattern of zebrafish foxl2a and foxl2b during embryo development. They were predominantly expressed in the cranial paraxial mesoderm (CPM) and cranial venous vasculature (CVV) during somitogenesis and subsequently expressed in the pharyngeal arches after 48 h post-fertilization (hpf). Then, we compared the brain structures among zebrafish wildtype (WT) and three homozygous foxl2 mutants (foxl2a-/-, foxl2b-/- and foxl2a-/-;foxl2b-/-) and found the reduction of the fourth ventricle in the three foxl2 mutants, especially in foxl2a-/-;foxl2b-/- mutant. Finally, we detected several key transcription factors involved in the gene regulatory network of midbrain-hindbrain boundary (MHB) patterning, such as wnt1, en1b and pax2a. Their expression levels were obviously downregulated in MHB of foxl2a-/- and foxl2a-/-;foxl2b-/- mutants. Thus, we suggest that Foxl2a and Foxl2b are involved in MHB and the fourth ventricle development in zebrafish. The current study provides insights into the molecular mechanism underlying development of brain ventricular system.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Rombencéfalo , Mesencéfalo/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento
6.
Dev Biol ; 492: 172-186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244504

RESUMO

The process of morphogenesis carefully crafts cells into complex organ structures which allows them to perform their unique functions. During brain development, the neuroepithelial tissue must go through apical and basal folding which is mediated through the instruction of both intrinsic and extrinsic factors. While much is known about apical folding, the mechanisms that regulate basal folding are less understood. Using the highly conserved zebrafish midbrain-hindbrain boundary (MHB) as an epithelial tissue model, we have identified the basement membrane protein laminin-111 as a key extrinsic factor in basal tissue folding. Laminin-111 is a highly conserved, heterotrimeric protein that lines the basal surface of the neuroepithelium. Laminin-111 is comprised of one alpha, one beta, and one gamma chain encoded by the genes lama1, lamb1, and lamc1, respectively. Human mutations in individual laminin-111 genes result in disparate disease phenotypes; therefore, we hypothesized that each laminin gene would have a distinctive role in tissue morphogenesis. Using zebrafish mutants for laminin-111 genes, we found that each laminin chain has a unique impact on basal folding. We found that lamc1 is the most critical gene for MHB morphogenesis, followed by lama1, and finally lamb1a. This hierarchy was discovered via three-dimensional single cell shape analysis, localization of myosin regulatory light chain (MRLC), and with analysis of MHB tissue folding later in development. These findings are essential for development of novel techniques in tissue engineering and to elucidate differences in human diseases due to specific chain mutations.


Assuntos
Laminina , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Laminina/genética , Laminina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Morfogênese/genética , Epitélio/metabolismo
7.
Methods Mol Biol ; 2440: 181-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218540

RESUMO

Live imaging of zebrafish embryos that maintains normal development can be difficult to achieve due to a combination of sample mounting, immobilization, and phototoxicity issues that, once overcome, often still results in image quality sufficiently poor that computer-aided analysis or even manual analysis is not possible. Here, we describe our mounting strategy for imaging the zebrafish midbrain-hindbrain boundary (MHB) with light sheet fluorescence microscopy (LSFM) and pilot experiments to create a study-specific set of parameters for semiautomatically tracking cellular movements in the embryonic midbrain primordium during zebrafish segmentation.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Mesencéfalo , Microscopia de Fluorescência , Rombencéfalo
8.
Anim Cells Syst (Seoul) ; 25(1): 56-64, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33717417

RESUMO

TRIM46 is a RING finger E3 ligase which belongs to TRIM (tripartite motif-containing) protein family. TRIM46 is required for neuronal polarity and axon specification by driving the formation of parallel microtubule arrays, whereas its embryological functions remain to be determined yet. Expression patterns and biological functions of trim46a, a zebrafish homologue of TRIM46, were studied in zebrafish embryo. First, maternal transcripts of trim46a were present at 1 cell stage whereas zygotic messages were abundant in the eyes, MHB (Midbrain-Hindbrain Boundary) and hindbrain at 24 hpf (hours post fertilization). Second, transcriptional regulatory region of trim46a contains cis-acting elements binding a transcriptional factor Foxa2. Transcription of foxa2 is positively regulated by Sonic Hedgehog (SHH), and treatment of cyclopamine, an SHH inhibitor, represses transcription of foxa2 in 4 hpf through 24 hpf embryos. Third, the transcriptional repression of foxa2 inhibited transcription of trim46a to cause developmental defects in the midbrain and MHB. Finally, spatiotemporal expression patterns of a midbrain marker otx2b in the developmental defects confirmed inhibition of SHH by cyclopamine caused underdevelopment of the midbrain and MHB at 24 hpf. We propose a signaling network where trim46a contributes to development of the midbrain and MHB via Foxa2, a downstream element of SHH signaling in zebrafish embryogenesis.

9.
Development ; 147(11)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439756

RESUMO

The formation and maintenance of sharp boundaries between groups of cells play a vital role during embryonic development as they serve to compartmentalize cells with similar fates. Some of these boundaries also act as organizers, with the ability to induce specific cell fates and morphogenesis in the surrounding cells. The midbrain-hindbrain boundary (MHB) is such an organizer: it acts as a lineage restriction boundary to prevent the intermingling of cells with different developmental fates. However, the mechanisms underlying the lineage restriction process remain unclear. Here, using novel fluorescent knock-in reporters, live imaging, Cre/lox-mediated lineage tracing, atomic force microscopy-based cell adhesion assays and mutant analysis, we analyze the process of lineage restriction at the MHB and provide mechanistic details. Specifically, we show that lineage restriction occurs by the end of gastrulation, and that the subsequent formation of sharp gene expression boundaries in the developing MHB occur through complementary mechanisms, i.e. cell-fate plasticity and cell sorting. Furthermore, we show that cell sorting at the MHB involves differential adhesion among midbrain and hindbrain cells that is mediated by N-cadherin and Eph-ephrin signaling.


Assuntos
Adesão Celular/fisiologia , Mesencéfalo/metabolismo , Rombencéfalo/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Caderinas/genética , Caderinas/metabolismo , Linhagem da Célula , Embrião não Mamífero/metabolismo , Efrinas/antagonistas & inibidores , Efrinas/genética , Efrinas/metabolismo , Gastrulação , Edição de Genes , Mesencéfalo/patologia , Microscopia de Força Atômica , Microscopia de Fluorescência , Morfolinos/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Rombencéfalo/patologia , Transdução de Sinais , Imagem com Lapso de Tempo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Dev Biol ; 462(2): 152-164, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243887

RESUMO

The process that partitions the nascent vertebrate central nervous system into forebrain, midbrain, hindbrain, and spinal cord after neural induction is of fundamental interest in developmental biology, and is known to be dependent on Wnt/ß-catenin signaling at multiple steps. Neural induction specifies neural ectoderm with forebrain character that is subsequently posteriorized by graded Wnt signaling: embryological and mutant analyses have shown that progressively higher levels of Wnt signaling induce progressively more posterior fates. However, the mechanistic link between Wnt signaling and the molecular subdivision of the neural ectoderm into distinct domains in the anteroposterior (AP) axis is still not clear. To better understand how Wnt mediates neural AP patterning, we performed a temporal dissection of neural patterning in response to manipulations of Wnt signaling in zebrafish. We show that Wnt-mediated neural patterning in zebrafish can be divided into three phases: (I) a primary AP patterning phase, which occurs during gastrulation, (II) a mes/r1 (mesencephalon-rhombomere 1) specification and refinement phase, which occurs immediately after gastrulation, and (III) a midbrain-hindbrain boundary (MHB) morphogenesis phase, which occurs during segmentation stages. A major outcome of these Wnt signaling phases is the specification of the major compartment divisions of the developing brain: first the MHB, then the diencephalic-mesencephalic boundary (DMB). The specification of these lineage divisions depends upon the dynamic changes of gene transcription in response to Wnt signaling, which we show primarily involves transcriptional repression or indirect activation. We show that otx2b is directly repressed by Wnt signaling during primary AP patterning, but becomes resistant to Wnt-mediated repression during late gastrulation. Also during late gastrulation, Wnt signaling becomes both necessary and sufficient for expression of wnt8b, en2a, and her5 in mes/r1. We suggest that the change in otx2b response to Wnt regulation enables a transition to the mes/r1 phase of Wnt-mediated patterning, as it ensures that Wnts expressed in the midbrain and MHB do not suppress midbrain identity, and consequently reinforce formation of the DMB. These findings integrate important temporal elements into our spatial understanding of Wnt-mediated neural patterning and may serve as an important basis for a better understanding of neural patterning defects that have implications in human health.


Assuntos
Padronização Corporal/fisiologia , Placa Neural/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Diencéfalo/metabolismo , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gástrula/metabolismo , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/metabolismo , Sistema Nervoso/metabolismo , Placa Neural/metabolismo , Rombencéfalo/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Dev Growth Differ ; 62(5): 301-310, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32130723

RESUMO

The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.


Assuntos
Ectoderma/citologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Urocordados/embriologia , Urocordados/genética , Animais , Urocordados/citologia
12.
Dev Biol ; 457(1): 30-42, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520602

RESUMO

In early vertebrate embryos, the dorsal ectoderm is induced by the axial mesendoderm to form the neural plate, which is given competence to form neural cells by soxB1 genes. Subsequently, neurogenesis proceeds in proneural clusters that are generated by a gene network involving proneural genes and Notch signaling. However, what occurs between early neural induction and the later initiation of neurogenesis has not been fully revealed. In the present study, we demonstrated that during gastrulation, the expression of the Oct4-related PouV gene pou5f3 (also called pou2), which is widely observed at earlier stages, was rapidly localized to an array of isolated spotted domains, each of which coincided with individual proneural clusters. Two-color in situ hybridization confirmed that each pou5f3-expressing domain included a proneural cluster. Further analysis demonstrated that anterior pou5f3 domains straddled the boundaries between rhombomere 1 (r1) and r2, whereas posterior domains were included in r4. The effects of forced expression of an inducible negative dominant-interfering pou5f3 gene suggested that pou5f3 activated early proneural genes, such as neurog1 and ebf2, and also soxB1, but repressed the late proneural genes atoh1a and ascl1b. Furthermore, pou5f3 was considered to repress her4.1, a Notch-dependent Hairy/E(spl) gene involved in lateral inhibition in proneural clusters. These results suggest that pou5f3 promotes early neurogenesis in proneural clusters, but negatively regulates later neurogenesis. Suppression of pou5f3 also altered the expression of other her genes, including her3, her5, and her9, further supporting a role for pou5f3 in neurogenesis. In vitro reporter assays in P19 cells showed that pou5f3 was repressed by neurog1, but activated by Notch signaling. These findings together demonstrate the importance of the pou5f3-mediated gene regulatory network in neural development in vertebrate embryos.


Assuntos
Placa Neural/embriologia , Neurogênese , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Proteínas de Peixe-Zebra/genética
13.
Genetics ; 212(4): 1301-1319, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175226

RESUMO

Fibroblast growth factor (Fgf) signaling regulates many processes during development. In most cases, one tissue layer secretes an Fgf ligand that binds and activates an Fgf receptor (Fgfr) expressed by a neighboring tissue. Although studies have identified the roles of specific Fgf ligands during development, less is known about the requirements for the receptors. We have generated null mutations in each of the five fgfr genes in zebrafish. Considering the diverse requirements for Fgf signaling throughout development, and that null mutations in the mouse Fgfr1 and Fgfr2 genes are embryonic lethal, it was surprising that all zebrafish homozygous mutants are viable and fertile, with no discernable embryonic defect. Instead, we find that multiple receptors are involved in coordinating most Fgf-dependent developmental processes. For example, mutations in the ligand fgf8a cause loss of the midbrain-hindbrain boundary, whereas, in the fgfr mutants, this phenotype is seen only in embryos that are triple mutant for fgfr1a;fgfr1b;fgfr2, but not in any single or double mutant combinations. We show that this apparent fgfr redundancy is also seen during the development of several other tissues, including posterior mesoderm, pectoral fins, viscerocranium, and neurocranium. These data are an essential step toward defining the specific Fgfrs that function with particular Fgf ligands to regulate important developmental processes in zebrafish.


Assuntos
Encéfalo/metabolismo , Desenvolvimento Embrionário , Fatores de Crescimento de Fibroblastos/genética , Mesoderma/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
14.
Anim Cells Syst (Seoul) ; 23(1): 26-31, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30834156

RESUMO

ZNF76 is a transcriptional repressor that targets the TATA-binding protein (TBP) and plays an essential role during brain development; however, its function during embryogenesis remains unclear. Here, we report the expression pattern and potential functions of znf76 in zebrafish embryos. Maternal transcripts of znf76 were detected at low levels in embryos at the 1-cell stage, with zygotic transcripts appearing at the sphere stage. At the bud stage, the distribution of znf76 transcripts was polarized to the anterior and posterior regions of the embryos, and znf76 transcripts were further restricted to the trigeminal placode and proctodeum posterior gut of the embryos at 18 h postfertilization (hpf). znf76 transcripts were localized to the midbrain-hindbrain boundary (MHB), hindbrain, and developing eyes at 24 hpf. Ectopic expression of znf76 with 5'-capped znf76 mRNA microinjected into embryos at the 1-cell stage caused phenotypic defects in the eyes, MHB, hindbrain, and spinal cord. Overexpression of znf76 resulted in a drastic reduction of pax2a, fgf8a, and rx1 transcripts in the optic stalk, MHB, and eyes, respectively. Taken together, these data indicate that Znf76 governs developmental processes in the MHB, hindbrain, and eyes in zebrafish embryos. We also discuss the Fgf8 signaling networks associated with the Znf76 function.

15.
Brain Struct Funct ; 224(2): 627-642, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30460553

RESUMO

The present study initiates our investigation regarding the role of calb2a and calb2b genes that are expressed in the central nervous system, including the multiple tissues during early embryonic development of zebrafish. In this study, we have adopted individual and combined morpholino-mediated inactivation approach to investigate the functions of calb2a and calb2b in early development of the zebrafish. We have found that calb2a and calb2b morpholino alone failed to generate an obvious phenotype; however, morphological inspection in early developmental stages of calb2a and calb2b combined knockdown morphants show abnormal neural plate folding in midbrain-hindbrain region. In addition to this, combinatorial loss of these mRNA leads to severe hydrocephalus, axial curvature defect, and yolk sac edema in later developmental stages. Also, the combined knockdown of calb2a and calb2b are found to be associated with an impaired touchdown and swimming performance in the zebrafish. Co-injection of the calb2a and calb2b morpholino oligonucleotide cocktail with human CALB2 mRNA leads to the rescue of the strong phenotype. This study provided the first comprehensive analyses of the zebrafish Calb2a and Calb2b proteins; we have found that Calb2a and Calb2b are highly conserved across vertebrate species and originated from the same ancestral gene long back in the evolution. Homology modeling and docking with the similar structure and Ca2+ binding sites for both proteins provide the evidence that both the proteins may have similar function and one can compensate for the loss of other. Collectively, these findings confirm the unique and essential functions of calb2a and calb2b genes in the early development of the zebrafish.


Assuntos
Calbindina 2/genética , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/genética , Animais , Calbindina 2/metabolismo , Técnicas de Silenciamento de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
16.
Biol Open ; 7(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30305282

RESUMO

Basal constriction occurs at the zebrafish midbrain-hindbrain boundary constriction (MHBC) and is likely a widespread morphogenetic mechanism. 3D reconstruction demonstrates that MHBC cells are wedge-shaped, and initially constrict basally, with subsequent apical expansion. wnt5b is expressed in the MHB and is required for basal constriction. Consistent with a requirement for this pathway, expression of dominant negative Gsk3ß overcomes wnt5b knockdown. Immunostaining identifies focal adhesion kinase (Fak) as active in the MHB region, and knockdown demonstrates Fak is a regulator of basal constriction. Tissue specific knockdown further indicates that Fak functions cell autonomously within the MHBC. Fak acts downstream of wnt5b, suggesting that Wnt5b signals locally as an early step in basal constriction and acts together with more widespread Fak activation. This study delineates signaling pathways that regulate basal constriction during brain morphogenesis.

17.
Front Neuroanat ; 11: 52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713249

RESUMO

The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.

18.
Mech Dev ; 146: 10-30, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28549975

RESUMO

Brd2 is a member of the bromodomain-extraterminal domain (BET) family of proteins and functions as an acetyl-histone-directed transcriptional co-regulator and recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. While Brd2 acts as a protooncogene in mammalian blood, developmental studies link it to regulation of neuronal apoptosis and epilepsy, and complete knockout of the gene is invariably embryonic lethal. In Drosophila, the Brd2 homolog acts as a maternal effect factor necessary for segment formation and identity and proper expression of homeotic loci, including Ultrabithorax and engrailed. To test the various roles attributed to Brd2 in a single developmental system representing a non-mammalian vertebrate, we conducted a phenotypic characterization of Brd2a deficient zebrafish embryos produced by morpholino knockdown and corroborated by Crispr-Cas9 disruption and small molecule inhibitor treatments. brd2aMO morphants exhibit reduced hindbrain with an ill-defined midbrain-hindbrain boundary (MHB) region; irregular notochord, neural tube, and somites; and abnormalities in ventral trunk and ventral nerve cord interneuron positioning. Using whole mount TUNEL and confocal microscopy, we uncover a significant decrease, then a dramatic increase, of p53-independent cell death at the start and end of segmentation, respectively. In contrast, using qualitative and quantitative analyses of BrdU incorporation, phosphohistone H3-tagging, and flow cytometry, we detect little effect of Brd2a knockdown on overall proliferation levels in embryos. RNA in situ hybridization shows reduced or absent expression of homeobox gene eng2a and paired box gene pax2a, in the hindbrain domain of the MHB region, and an overabundance of pax2a-positive kidney progenitors, in knockdowns. Together, these results suggest an evolutionarily conserved role for Brd2 in the proper formation and/or patterning of segmented tissues, including the vertebrate CNS, where it acts as a bi-modal regulator of apoptosis, and is necessary, directly or indirectly, for proper expression of genes that pattern the MHB and/or regulate differentiation in the anterior hindbrain.


Assuntos
Morfogênese/genética , Tubo Neural/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Animais , Apoptose/genética , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesencéfalo/crescimento & desenvolvimento , Morfolinos/genética , Proteínas do Tecido Nervoso/genética , Rombencéfalo/crescimento & desenvolvimento , Somitos/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
19.
Cell Stem Cell ; 20(1): 135-148, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28094017

RESUMO

Stem cell treatments for neurodegenerative diseases are expected to reach clinical trials soon. Most of the approaches currently under development involve transplantation of immature progenitors that subsequently undergo phenotypic and functional maturation in vivo, and predicting the long-term graft outcome already at the progenitor stage remains a challenge. Here, we took an unbiased approach to identify predictive markers expressed in dopamine neuron progenitors that correlate with graft outcome in an animal model of Parkinson's disease through gene expression analysis of >30 batches of grafted human embryonic stem cell (hESC)-derived progenitors. We found that many of the commonly used markers did not accurately predict in vivo subtype-specific maturation. Instead, we identified a specific set of markers associated with the caudal midbrain that correlate with high dopaminergic yield after transplantation in vivo. Using these markers, we developed a good manufacturing practice (GMP) differentiation protocol for highly efficient and reproducible production of transplantable dopamine progenitors from hESCs.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/transplante , Doença de Parkinson/terapia , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Laminina/farmacologia , Mesencéfalo/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/metabolismo , Fatores de Tempo , Resultado do Tratamento
20.
Mol Neurobiol ; 54(9): 6944-6959, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27774573

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.


Assuntos
Transtorno do Espectro Autista/genética , Cerebelo/embriologia , Cerebelo/metabolismo , Desenvolvimento Embrionário/genética , MicroRNAs/metabolismo , Animais , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA