RESUMO
Since smallpox vaccination was discontinued in 1980, there has been a resurgence of poxvirus infections, particularly the monkeypox virus. Without a global recommendation to use the smallpox vaccine, the population is not immune, posing a severe threat to public health. Given these circumstances, it is crucial to understand the relationship between poxviruses and their hosts. Therefore, this study focuses on the ectromelia virus, the causative agent of mousepox, which serves as an excellent model for studying poxvirus pathogenesis. Additionally, we investigated the role of mitochondria in innate antiviral immunity during ECTV infection, focusing specifically on mitochondrial antiviral signaling protein. The study used a Moscow strain of ECTV and L929 mouse fibroblasts. Cells were treated with ECTV and chemical modulators of mitochondrial network: Mdivi-1 and CCCP. Our investigation revealed that an elongated mitochondrial network attenuates the suppression of MAVS-dependent immunity by ECTV and reduces ECTV replication in L929 fibroblasts compared to cells with an unaltered mitochondrial network. Conversely, a fragmented mitochondrial network reduces the number of progeny virions while increasing the inhibition of the virus-induced immune response during infection. In conclusion, our study showed that modifications of mitochondrial network morphology alter MAVS-dependent immunity in ECTV-infected mouse L929 fibroblasts.
RESUMO
Self-assembly processes commonly occur in various biological contexts to form functional biological structures. However, the self-assembly of nanofibers within cells by heterologous molecules showing a biological function is rare. In this work, we reported the intracellular formation of fluorescent nanofibers by a natural small molecule, lycobetaine (LBT), which facilitated the direct physical connection between mitochondria and synchronized their membrane potential oscillations. The luminescent properties of LBT enabled the real-time observation of nanofiber formation, while the semiconductive nature of the LBT nanofiber facilitated electrical signal transduction among the connected mitochondria. This study introduces an approach to modulate mitochondrial connectivity within cells using "nano-cables" which facilitate studies on synchronized mitochondrial operations and the underlying mechanisms of drug action.
Assuntos
Mitocôndrias , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Nanofibras/química , Corantes Fluorescentes/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Células HeLaRESUMO
Mitochondrial network architecture, which is closely related to mitochondrial function, is mechanically sensitive and regulated by multiple stimuli. However, the effects of microtopographic cues on mitochondria remain poorly defined. Herein, polycaprolactone (PCL) surfaces were used as models to investigate how micropatterns regulate mitochondrial network architecture and function in rat adipose-derived stem cells (rASCs). It was found that large pit (LP)-induced rASCs to form larger and more complex mitochondrial networks. Consistently, the expression of key genes related to mitochondrial dynamics revealed that mitochondrial fusion (MFN1 and MFN2) and midzone fission (DRP1 and MFF) were increased in rASCs on LP. In contrast, the middle pit (MP)-enhanced mitochondrial biogenesis, as evidenced by the larger mitochondrial area and higher expression of PGC-1. Both LP and MP promoted ATP production in rASCs. It is likely that LP increased ATP levels through modulating mitochondrial network architecture while MP stimulated mitochondria biogenesis to do so. Our study clarified the regulation of micropatterned surfaces on mitochondria, highlighting the potential of LP and MP as a simple platform to stimulate mitochondria and the subsequent cellular function of MSCs.
RESUMO
Continuous fusion and fission are critical for mitochondrial health. In this study, we further characterize the role played by dynamin-related protein 1 (Drp1) in mitochondrial fission. We show that a single amino acid change in Drp1 at position 39 from serine to alanine (S39A) within the GTP-binding (GTPase) domain results in a fused mitochondrial network in human SH-SY5Y neuroblastoma cells. Interestingly, the phosphorylation of Ser-616 and Ser-637 of Drp1 remains unaffected by the S39A mutation, and mitochondrial bioenergetic profile and cell viability in the S39A mutant were comparable to those observed in the control. This leads us to propose that the serine 39 residue of Drp1 plays a crucial role in mitochondrial distribution through its involvement in the GTPase activity. Furthermore, this amino acid mutation leads to structural anomalies in the mitochondrial network. Taken together, our results contribute to a better understanding of the function of the Drp1 protein.
Assuntos
Dinaminas , Mitocôndrias , Dinâmica Mitocondrial , Serina , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Mitocôndrias/metabolismo , Serina/metabolismo , Serina/genética , Dinâmica Mitocondrial/genética , Guanosina Trifosfato/metabolismo , Linhagem Celular Tumoral , Fosforilação , Mutação , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genéticaRESUMO
Recent evidence indicates that the SARS-CoV-2 spike protein affects mitochondria with a cell type-dependent outcome. We elucidate the effect of the SARS-CoV-2 receptor binding domain (RBD) on the mitochondrial network and cristae morphology, oxygen consumption, mitoROS production, and inflammatory cytokine expression in cultured human lung microvascular (HLMVECs), coronary artery endothelial (HCAECs), and bronchial epithelial cells (HBECs). Live Mito Orange staining, STED microscopy, and Fiji MiNa analysis were used for mitochondrial cristae and network morphometry; an Agilent XFp analyser for mitochondrial/glycolytic activity; MitoSOX fluorescence for mitochondrial ROS; and qRT-PCR plus Luminex for cytokines. HLMVEC exposure to SARS-CoV-2 RBD resulted in the fragmentation of the mitochondrial network, mitochondrial swelling, increased cristae area, reduced cristae density, and suppressed mitochondrial oxygen consumption and glycolysis. No significant mitochondrial morphology or oxygen consumption changes were observed in HCAECs and HBECs. SARS-CoV-2 RBD induced mitoROS-mediated expression of cytokines GM-CSF and IL-1ß in all three investigated cell types, along with IL-8 expression in both endothelial cell types. The findings suggest mitochondrial ROS control SARS-CoV-2 RBD-induced inflammation in HLMVECs, HCAECs, and HBECs, with the mitochondria of HLMVECs being more sensitive to SARS-CoV-2 RBD.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Vasos Coronários , Espécies Reativas de Oxigênio , SARS-CoV-2 , Células Epiteliais , Citocinas , Estresse OxidativoRESUMO
Background: Dynamin-related protein Drp1 -a major mitochondrial fission protein- is widely distributed in the central nervous system and plays a crucial role in regulating mitochondrial dynamics, specifically mitochondrial fission and the organelle's shaping. Upregulated Drp1 function may contribute to the pathological progression of neurodegenerative diseases by dysregulating mitochondrial fission/ fusion. The study aims to investigate the effects of Drp1 on retinoic acid-BDNF-induced (RA-BDNF) neuronal differentiation and mitochondrial network reorganization in SH-SY5Y neuroblastoma cells. Methods: We generated an SH-SY5Y cell line with stably depleted Drp1 (shDrp1). We applied RNA sequencing and analysis to study changes in gene expression upon stable Drp1 knockdown. We visualized the mitochondria by transmission electron microscopy and used high-content confocal imaging to characterize and analyze cell morphology changes and mitochondrial network reorganization during neuronal differentiation. Results: shDrp1 cells exhibited fused mitochondrial ultrastructure with perinuclear clustering. Stable knockdown of Drp1 resulted in the upregulation of genes involved in nervous system development. High content analysis showed improved neurite outgrowth, segmentation, and extremities in differentiated shDrp1 cells. Neuronal differentiation was associated with a significant reduction in ERK1/2 phosphorylation, and ERK1/2 phosphorylation was independent of the dual specificity phosphatases DUSP1/6 in shDrp1 cells. Differentiated control underwent mitochondrial morphology remodeling, whereas differentiated shDrp1 cells retained the highly fused mitochondria and developed long, elongated structures. The shDrp1 cells responded to specific apoptotic stimuli like control in vitro, suggesting that Drp1 is not a prerequisite for apoptosis in SH-SY5Y cells. Moreover, Drp1 downregulation reduced the formation of toxic mHtt aggregates in vitro. Discussion: Our results indicate that Drp1 silencing enhances RA-BDNF-induced neuronal differentiation by promoting transcriptional and mitochondrial network changes in undifferentiated cells. We also demonstrate that the suppression of Drp1 reduces toxic mHtt aggregate formation in vitro, suggesting protection against neurotoxicity. Thus, Drp1 may be an attractive target for further investigation in future strategies to combat neurodegenerative diseases.
RESUMO
The mitochondrial network (MN) is a dynamic structure undergoing constant remodeling in the cell. It is assumed that perturbations to the MN may be associated with various pathologies, including Parkinson's disease (PD). Using automatic image analysis and super-resolution microscopy, we have assessed the MN parameters in fibroblasts from patients with established hereditary PD mutations (associated with PINK1, LRRK2, and α-synuclein, as well as PINK1 and Parkin proteins simultaneously) under normal conditions and after hydrogen peroxide-induced stress. Fibroblasts with the Pink1/Parkin mutation are most different in morphology to fibroblasts obtained from conditionally healthy donors: the MN is larger, and it contains longer mitochondria and accumulated individual mitochondria. In addition to MN, we evaluated other cellular parameters, such as cytosolic and mitochondrial ROS production and mitochondrial membrane potential. It has been shown that mitochondria of fibroblasts with mutations in genes encoding PINK1, α-synuclein, and Pink/Parkin tend towards hyperpolarization and cytosolic ROS overproduction, while mitochondrial ROS production was higher only in fibroblasts with PINK1 and α-synuclein mutations.
RESUMO
Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.
Assuntos
Sirtuína 3 , Traumatismos da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Sirtuína 3/metabolismo , Zinco/metabolismo , Traumatismos da Medula Espinal/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , GTP Fosfo-Hidrolases/metabolismoRESUMO
INTRODUCTION: Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride. OBJECTIVES: We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1. METHODS: Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA. RESULTS: NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics. CONCLUSION: These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.
RESUMO
Exercise produces oxidants from a variety of intracellular sources, including NADPH oxidases (NOX) and mitochondria. Exercise-derived reactive oxygen species (ROS) are beneficial, and the amount and location of these ROS is important to avoid muscle damage associated with oxidative stress. We discuss here some of the evidence that involves ROS production associated with skeletal muscle contraction and the potential oxidative stress associated with muscle contraction. We also discuss the potential role of H2O2 produced after NOX activation in the regulation of glucose transport in skeletal muscle. Finally, we propose a model based on evidence for the role of different populations of mitochondria in skeletal muscle in the regulation of ATP production upon exercise. The subsarcolemmal population of mitochondria has the enzymatic and metabolic components to establish a high mitochondrial membrane potential when fissioned at rest but lacks the capacity to produce ATP. Calcium entry into the mitochondria will further increase the metabolic input. Upon exercise, subsarcolemmal mitochondria will fuse to intermyofibrillar mitochondria and will transfer the mitochondria membrane potential to them. These mitochondria are rich in ATP synthase and will subsequentially produce the ATP needed for muscle contraction in long-term exercise. These events will optimize energy use and minimize mitochondria ROS production.
RESUMO
The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.
Assuntos
Lesões Encefálicas Traumáticas , Fibroblastos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Estresse Oxidativo , Animais , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Fibroblastos/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genéticaRESUMO
BACKGROUND: Cervical cancer remains one of the most prevalent cancers worldwide. Accumulating evidence suggests that specificity protein 1 (Sp1) plays a pivotal role in tumour progression. The underlying role and mechanism of Sp1 in tumour progression remain unclear. METHODS: The protein level of Sp1 in tumour tissues was determined by immunohistochemistry. The effect of Sp1 expression on the biological characteristics of cervical cancer cells was assessed by colony, wound healing, transwell formation, EdU, and TUNEL assays. Finally, the underlying mechanisms and effects of Sp1 on the mitochondrial network and metabolism of cervical cancer were analysed both in vitro and in vivo. RESULTS: Sp1 expression was upregulated in cervical cancer. Sp1 knockdown suppressed cell proliferation both in vitro and in vivo, while overexpression of Sp1 had the opposite effects. Mechanistically, Sp1 facilitated mitochondrial remodelling by regulating mitofusin 1/2 (Mfn1/2), OPA1 mitochondrial dynamin-like GTPase (Opa1), and dynamin 1-like (Drp1). Additionally, the Sp1-mediated reprogramming of glucose metabolism played a critical role in the progression of cervical cancer cells. CONCLUSIONS: Our study demonstrates that Sp1 plays a vital role in cervical tumorigenesis by regulating the mitochondrial network and reprogramming glucose metabolism. Targeting Sp1 could be an effective strategy for the treatment of cervical cancer.
Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , MicroRNAs/metabolismo , Transformação Celular Neoplásica , Glucose/metabolismo , Proliferação de Células , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular TumoralRESUMO
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
RESUMO
OBJECTIVE: Mitochondrial network dynamics may play role in metabolic homeostasis. Whether mitochondrial network dynamics are involved in adaptations to day-night fluctuations in energy supply and demand is unclear. Here we visualized and quantified the mitochondrial network morphology in human skeletal muscle of young healthy lean and older individuals with obesity over the course of 24 h METHODS: Muscle biopsies taken at 5 timepoints over a 24-hour period obtained from young healthy lean and older metabolically impaired obese males were analyzed for mitochondrial network integrity with confocal laser scanning microscopy. Variation of level of fragmentation over the course of the day were aligned with variation of mitochondrial respiration over the day RESULTS: Young healthy lean individuals displayed a day-night rhythmicity in mitochondrial network morphology, which aligned with the day-night rhythmicity of mitochondrial respiratory capacity, with a more fused network coinciding with higher mitochondrial respiratory capacity. In the older individuals with obesity, the mitochondrial network was more fragmented overall compared to young healthy lean individuals and completely lacked 24 h rhythmicity, which was also true for the mitochondrial respiratory capacity CONCLUSIONS: Our data shows a paralleled rhythmicity between mitochondrial network morphology and mitochondrial oxidative capacity, which oscillates over the course of a mimicked real-life day in human skeletal muscle of young, healthy lean individuals. In older individuals with obesity, the lack of a 24-hour rhythmicity in mitochondrial network connectivity was also aligned with a lack in respiratory capacity. This suggests that 24-hour rhythmicity in mitochondrial network connectivity is a determinant of rhythmicity in mitochondrial respiratory capacity. Thus, restoring mitochondrial network integrity may promote mitochondrial respiratory capacity and hence contribute to blunting the metabolic aberrations in individuals with a disturbed 24-hour rhythmicity in metabolism, like older individuals with obesity.
Assuntos
Músculo Esquelético , Obesidade , Masculino , Humanos , Idoso , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Ritmo Circadiano , Respiração , BiópsiaRESUMO
Mitochondria are cellular organelles that play an essential role in generating the chemical energy needed for the biochemical reactions in cells. Mitochondrial biogenesis, i.e., de novo mitochondria formation, results in enhanced cellular respiration, metabolic processes, and ATP generation, while autophagic clearance of mitochondria (mitophagy) is required to remove damaged or useless mitochondria. The balance between the opposing processes of mitochondrial biogenesis and mitophagy is highly regulated and crucial for the maintenance of the number and function of mitochondria as well as for the cellular homeostasis and adaptations to metabolic demands and extracellular stimuli. In skeletal muscle, mitochondria are essential for maintaining energy homeostasis, and the mitochondrial network exhibits complex behaviors and undergoes dynamic remodeling in response to various conditions and pathologies characterized by changes in muscle cell structure and metabolism, such as exercise, muscle damage, and myopathies. In particular, the involvement of mitochondrial remodeling in mediating skeletal muscle regeneration following damage has received increased attention, as modifications in mitophagy-related signals arise from exercise, while variations in mitochondrial restructuring pathways can lead to partial regeneration and impaired muscle function. Muscle regeneration (through myogenesis) following exercise-induced damage is characterized by a highly regulated, rapid turnover of poor-functioning mitochondria, permitting the synthesis of better-functioning mitochondria to occur. Nevertheless, essential aspects of mitochondrial remodeling during muscle regeneration remain poorly understood and warrant further characterization. In this review, we focus on the critical role of mitophagy for proper muscle cell regeneration following damage, highlighting the molecular mechanisms of the mitophagy-associated mitochondrial dynamics and network reformation.
Assuntos
Mitocôndrias , Mitofagia , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Autofagia , Dinâmica Mitocondrial , Músculo Esquelético/metabolismoRESUMO
Mitochondrial turnover in the form of mitophagy is emerging as a central process in maintaining cellular function. The degradation of damaged mitochondria through mitophagy is particularly important in cells/tissues that exhibit high energy demands. Skeletal muscle is one such tissue that requires precise turnover of mitochondria in several conditions in order to optimize energy production and prevent bioenergetic crisis. For instance, the formation of skeletal muscle (i.e., myogenesis) is accompanied by robust turnover of low-functioning mitochondria to eventually allow the formation of high-functioning mitochondria. In mature skeletal muscle, alterations in mitophagy-related signaling occur during exercise, aging, and various disease states. Nonetheless, several questions regarding the direct role of mitophagy in various skeletal muscle conditions remain unknown. Furthermore, given the heterogenous nature of skeletal muscle with respect to various cellular and molecular properties, and the plasticity in these properties in various conditions, the involvement and characterization of mitophagy requires more careful consideration in this tissue. Therefore, this review will highlight the known mechanisms of mitophagy in skeletal muscle, and discuss their involvement during myogenesis and various skeletal muscle conditions. This review also provides important considerations for the accurate measurement of mitophagy and interpretation of data in skeletal muscle.
Assuntos
Autofagia , Mitofagia , Mitofagia/fisiologia , Músculo Esquelético/metabolismo , Diferenciação Celular , Mioblastos/metabolismoRESUMO
Our aim was to analyze the phenotypic-genetic correlations in a patient diagnosed with early onset corticobasal syndrome with progressive non-fluent aphasia (CBS-PNFA), characterized by predominant apraxia of speech, accompanied by prominent right-sided upper-limb limb-kinetic apraxia, alien limb phenomenon, synkinesis, myoclonus, mild cortical sensory loss, and right-sided hemispatial neglect. Whole-exome sequencing (WES) identified rare single heterozygous variants in ATP7B (c.3207C>A), SORL1 (c.352G>A), SETX (c.2385_2387delAAA), and FOXP1 (c.1762G>A) genes. The functional analysis revealed that the deletion in the SETX gene changed the splicing pattern, which was accompanied by lower SETX mRNA levels in the patient's fibroblasts, suggesting loss-of-function as the underlying mechanism. In addition, the patient's fibroblasts demonstrated altered mitochondrial architecture with decreased connectivity, compared to the control individuals. This is the first association of the CBS-PNFA phenotype with the most common ATP7B pathogenic variant p.H1069Q, previously linked to Wilson's disease, and early onset Parkinson's disease. This study expands the complex clinical spectrum related to variants in well-known disease genes, such as ATP7B, SORL1, SETX, and FOXP1, corroborating the hypothesis of oligogenic inheritance. To date, the FOXP1 gene has been linked exclusively to neurodevelopmental speech disorders, while our study highlights its possible relevance for adult-onset progressive apraxia of speech, which guarantees further study.
Assuntos
Afasia , Apraxias , Degeneração Corticobasal , Degeneração Hepatolenticular , Humanos , DNA Helicases , Fatores de Transcrição Forkhead/genética , Degeneração Hepatolenticular/genética , Proteínas Relacionadas a Receptor de LDL , Proteínas de Membrana Transportadoras , Enzimas Multifuncionais , Proteínas Repressoras , RNA Helicases , SíndromeRESUMO
BACKGROUND: McArdle disease is caused by myophosphorylase deficiency and results in complete inability for muscle glycogen breakdown. A hallmark of this condition is muscle oxidation impairment (e.g., low peak oxygen uptake (VO2peak)), a phenomenon traditionally attributed to reduced glycolytic flux and Krebs cycle anaplerosis. Here we hypothesized an additional role for muscle mitochondrial network alterations associated with massive intracellular glycogen accumulation. METHODS: We analyzed in depth mitochondrial characteristics-content, biogenesis, ultrastructure-and network integrity in skeletal-muscle from McArdle/control mice and two patients. We also determined VO2peak in patients (both sexes, N = 145) and healthy controls (N = 133). RESULTS: Besides corroborating very poor VO2peak values in patients and impairment in muscle glycolytic flux, we found that, in McArdle muscle: (a) damaged fibers are likely those with a higher mitochondrial and glycogen content, which show major disruption of the three main cytoskeleton components-actin microfilaments, microtubules and intermediate filaments-thereby contributing to mitochondrial network disruption in skeletal muscle fibers; (b) there was an altered subcellular localization of mitochondrial fission/fusion proteins and of the sarcoplasmic reticulum protein calsequestrin-with subsequent alteration in mitochondrial dynamics/function; impairment in mitochondrial content/biogenesis; and (c) several OXPHOS-related complex proteins/activities were also affected. CONCLUSIONS: In McArdle disease, severe muscle oxidative capacity impairment could also be explained by a disruption of the mitochondrial network, at least in those fibers with a higher capacity for glycogen accumulation. Our findings might pave the way for future research addressing the potential involvement of mitochondrial network alterations in the pathophysiology of other glycogenoses.
Assuntos
Doença de Depósito de Glicogênio Tipo V , Masculino , Feminino , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo V/metabolismo , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Tolerância ao Exercício , Mitocôndrias/metabolismoRESUMO
Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Fibroblastos/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologiaRESUMO
BACKGROUND: VPS13D is a large ubiquitin-binding protein playing an essential role in mitophagy by regulating mitochondrial fission. Recently, VPS13D biallelic pathogenic variants have been reported in patients displaying variable neurological phenotypes, with an autosomic recessive inheritance. The objectives of the study were to determine the genetic etiology of a patient with early onset sporadic progressive spastic ataxia, and to investigate the pathogenicity of VPS13D variants through functional studies on patient's skin fibroblasts. CASE PRESENTATION: We report the case of a 51-year-old patient with spastic ataxia, with an acute onset of the disease at age 7. Walking difficulties slowly worsened over time, with the use of a wheelchair since age 26. We have used trio-based whole-exome sequencing (WES) to identify genes associated with spastic ataxia. The impact of the identified variants on mitochondrial function was assessed in patient's fibroblasts by imaging mitochondrial network and measuring level of individual OXPHOS complex subunits. Compound heterozygous variants were identified in VPS13D: c.946C > T, p.Arg316* and c.12416C > T, p.(Ala4139Val). Primary fibroblasts obtained from this patient revealed an altered mitochondrial morphology, and a decrease in levels of proteins from complex I, III and IV. CONCLUSIONS: Our findings confirmed implication of VPS13D in spastic ataxia and provided further support for mitochondrial defects in patient's skin fibroblasts with VPS13D variants. This report of long-term follow up showed a slowly progressive course of the spastic paraplegia with cerebellar features. Furthermore, the performed functional studies could be used as biomarker helping diagnosis of VPS13D-related neurological disorders when molecular results are uneasy to interpret.