Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
J Inorg Biochem ; 260: 112673, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094247

RESUMO

Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.

2.
Cell Signal ; 121: 111303, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019337

RESUMO

BACKGROUND: N6-methyladenosine (m6A) mRNA modification and mitochondrial function hold paramount importance in the advancement of metabolic dysfunction-associated steatotic liver disease (MASLD). AIM: The aim of this study was to elucidate the impact of m6A on hepatic mitochondrial dysfunction and provide a novel perspective for a more comprehensive understanding of the pathogenesis of MASLD. METHODS: High-throughput screening methods were used to identify the underlying transcriptome and proteome changes in MASLD model mice. Western blotting, blue native gel electrophoresis (BNGE), dot blot, and Seahorse analyses were conducted to identify and validate the underlying regulatory mechanisms of m6A on mitochondria. RESULTS: In vivo, abnormal m6A modification in MASLD was attributed to the upregulation of methyltransferase like 3 (Mettl3) and the downregulation of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) induced by high-fat foods. In vitro, knockdown of Mettl3 inhibited hepatic oxidative phosphorylation (OXPHOS) and the mitochondrial respiratory chain (MRC), while overexpression of Mettl3 promoted these processes. However, knockout of the reader protein YTHDF1, which plays a crucial role in the m6A modification process, counteracted the effect of Mettl3 and suppressed mitochondrial OXPHOS. CONCLUSIONS: In MASLD, damage to the MRC may be regulated by the Mettl3-m6A-YTHDF1 axis, particularly by the role of YTHDF1. Modulation of the Mettl3-m6A-YTHDF1 axis has the potential to improve mitochondrial function, alleviate MASLD symptoms, and decrease the likelihood of disease progression.


Assuntos
Adenosina , Metiltransferases , Proteínas de Ligação a RNA , Metiltransferases/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fígado Gorduroso/metabolismo , Humanos , Modelos Animais de Doenças
3.
Discov Oncol ; 15(1): 177, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769217

RESUMO

PURPOSE: Strobilurins act as antifungal agents by inhibiting the mitochondrial respiratory chain. The cytotoxic activity of strobilurins, focusing on its anticancer activities, has been reported. However, the mechanisms involved in these activities remain unclear. METHODS: The cytotoxic effects of strobilurin X isolated from the mycelium of Mucidula. venosolamellata were examined in human cancer cell lines (A549 and HeLa) and normal fibroblasts (WI-38). RESULTS: Strobilurin X significantly decreased the viability of A549 and HeLa cells compared to that in the WI-38 cells after 48 h of exposure. The EC50 values for cytotoxicity in the A549, HeLa, and WI-38 cells were 3.4, 5.4, and 16.8 µg/mL, respectively. Strobilurin X inhibited the mitochondrial respiratory chain and enhanced the release of lactate in the A549 cells. The IC50 value of strobilurin X against the mitochondrial respiratory chain complex III activity was 139.8 ng/mL. The cytotoxicity induced by strobilurin X was not completely rescued after adding uridine, methyl pyruvate, or N-acetyl cysteine. Furthermore, pharmacological approaches demonstrated that strobilurin X failed to modulate the mitogen-activated protein kinase family and phosphoinositide 3-kinase-Akt pathways; alternatively, it suppressed protein synthesis independent of uridine. CONCLUSION: Strobilurin X induced cytotoxicity by blocking the mitochondrial respiratory chain and suppressing protein synthesis. These findings may aid in the development of novel anticancer drugs using strobilurins.

4.
J Biol Chem ; 300(5): 107269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588811

RESUMO

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Assuntos
Ataxia , Mitocôndrias , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona , Humanos , Mitocôndrias/enzimologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Debilidade Muscular/enzimologia , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Células Hep G2
5.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542518

RESUMO

Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Splicing de RNA
6.
Front Neurol ; 15: 1305404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529040

RESUMO

Background: Lennox-Gastaut syndrome (LGS), a severe developmental epileptic encephalopathy, has various underlying causes. Mitochondrial respiratory chain complex I (MRC I) deficiency is an important cause of metabolic disorders such as mitochondrial dysfunction that can compromise brain function, thereby causing intractable epilepsy, including LGS. Thus, it can be expected that the presence or absence of MRC I deficiency may affect the treatment outcome of patients with LGS. Objectives: In this retrospective study, we aimed to investigate differences in the epilepsy characteristics and treatment outcomes between patients with LGS with and without MRC I deficiency. Methods: We retrospectively reviewed the medical records of 92 patients with LGS. We divided 68 patients with LGS according to the presence (n = 30) or absence (n = 38) of MRC I deficiency and compared their epilepsy characteristics. Results: Generalized tonic and drop seizures were significantly worse in patients with LGS and MRC I deficiency than in those without MRC I deficiency group at the 1-year follow-up (p < 0.001) and final follow-up 1 (p < 0.001). Patients with LGS and MRC I deficiency had significantly fewer electroencephalogram (EEG) improvements compared to those without MRC I deficiency at the 1-year follow-up (p = 0.031). Additionally, in the final follow-up period, patients with LGS and MRC I deficiency had significantly less improvement in EEG findings compared to patients without MRC I deficiency (p < 0.001). Conclusion: The overall treatment prognosis-in terms of improvement in traumatic generalized tonic seizure, drop seizure, and EEG findings-is worse in patients with LGS and MRC I deficiency than that in patients with LGS but without MRC I deficiency. Additional and targeted treatment is required to treat LGS with MRC I deficiency.

7.
Geroscience ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499958

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), a prevalent plasticizer, is known to have endocrine-disrupting effects on males and cause reproductive toxicity. There were causal effects of DEHP on testosterone levels in the real world by Mendelian randomization analysis. Exposure to DEHP during the preadult stage might lead to premature testicular senescence, but the mechanisms responsible for this have yet to be determined. In this study, we administered DEHP (300 mg/kg/day) to male C57BL/6 mice from postnatal days 21 to 49. The mice were kept for 6 months without DEHP. RNA sequencing was conducted on testicular tissue at PNM6. The results indicated that DEHP hindered testicular development, lowered serum testosterone levels in male mice, and induced premature testicular senescence. TM3 Leydig cells were exposed to 300 µM of mono(2-ethylhexyl) phthalate (MEHP), the bioactive metabolite of DEHP, for 72 h. The results also found that DEHP/MEHP induced senescence in vivo and in vitro. The mitochondrial respiratory chain was disrupted in Leydig cells. The expression and stability of STAT5B were elevated by MEHP treatment in TM3 cells. Furthermore, p-ERK1/2 was significantly decreased by STAT5B, and mitochondria-STAT3 (p-STAT3 ser727) was significantly decreased due to the decrease of p-ERK1/2. Additionally, the senescence level of TM3 cells was decreased and treated with 5 mM NAC for 1 h after MEHP treatment. In conclusion, these findings provided a novel mechanistic understanding of Leydig cells by disrupting the mitochondrial respiratory chain through STAT5B-mitoSTAT3.

8.
FASEB J ; 38(3): e23466, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318780

RESUMO

Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Antioxidantes , Cromatografia Líquida , Espectrometria de Massas em Tandem , Estresse Oxidativo , Modelos Animais
9.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256023

RESUMO

The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Animais , Humanos , Transporte de Elétrons , Insuficiência Renal Crônica/tratamento farmacológico , Membranas Mitocondriais , Mitocôndrias
10.
J Ethnopharmacol ; 321: 117484, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012971

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY: Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS: Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION: Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Transporte de Elétrons , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
11.
J Biochem ; 175(3): 289-298, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38016934

RESUMO

With population aging, cognitive impairments and movement disorders due to neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and dementia with Lewy bodies (DLB), are increasingly considered as key social issues. Clinically, it has remained challenging to diagnose them before the onset of symptoms because of difficulty to observe the progressive loss of neurons in the brain. Therefore, with exploratory research into biomarkers, a number of candidates have previously been proposed, such as activities of mitochondrial respiratory chain complexes in blood in AD and PD. In this study, we focused on the formation of mitochondrial respiratory chain supercomplexes (SCs) because the formation of SC itself modulates the activity of each complex. Here we investigated the SC formation in leukocytes from patients with AD, PD and DLB. Our results showed that SCs were well formed in AD and PD compared with controls, while poorly formed in DLB. We highlighted that the disruption of the SC formation correlated with the progression of PD and DLB. Taking our findings together, we propose that pronounced SC formation would already have occurred before the onset of AD, PD and DLB and, with the progression of neurodegeneration, the SC formation would gradually be disrupted.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Transporte de Elétrons , Leucócitos
12.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958769

RESUMO

Mammalian hibernation is composed of multiple episodes of torpor bout, separated by phases of interbout arousal. During torpor, the skeletal muscles of mammals are undoubtedly inactive, but it has been proven to mitigate disuse atrophy. While interbout arousal has been implicated in the prevention of muscle atrophy, the underlying mechanisms sustaining muscle contraction remain to be explored. In the present study, Daurian ground squirrels (Spermophilus dauricus) were divided into four groups: pre-hibernation (PRE), torpor (TOR), interbout arousal (IBA), and post-hibernation (POST). The contractile performance of slow-twitch soleus muscle (SOL) and fast-twitch extensor digitorum longus muscle (EDL) was detected both in situ and in vitro. Concurrently, mitochondrial respiratory chain complex activity in these muscles was quantified. Our findings revealed that in situ contractile properties of both muscles, including force, power output, time duration, and force development/relaxation rates of twitch contraction, and force and power output of tetanic contraction declined in the TOR group compared to the PRE group, but improved in the IBA and POST groups. Fatigue resistance of muscles, determined by the power output of repetitive tetanic contractions in situ, decreased in the TOR group but recovered in the IBA and POST groups. In vitro studies demonstrated that tetanic contraction power output in isolated muscles increased with muscle temperature in both TOR and IBA groups. However, at the same temperature, power output was consistently lower in the TOR group compared to the IBA group. Moreover, the activity of the mitochondrial respiratory chain complex, especially Complexes I and II, decreased in the TOR group but showed recovery in the IBA and POST groups. These findings suggest that both the contractile performance and fatigue resistance of mammalian skeletal muscle are compromised during torpor but can be improved during interbout arousal and post-hibernation. The rebound in body temperature and rise in mitochondrial respiratory chain complex activity in skeletal muscle are involved in enhancing contractile performance and fatigue resistance. This study suggests that interbout arousal functions as a vital temporal interval during which skeletal muscles can transition from the inactivity induced by torpor to a state of restored contractile functionality. Thus, interbout arousal serves as a behavioral safeguard against disuse-induced damage to skeletal muscles during hibernation.


Assuntos
Músculo Esquelético , Sciuridae , Animais , Sciuridae/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Contração Muscular , Nível de Alerta/fisiologia
13.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894823

RESUMO

The current view of the mitochondrial respiratory chain complexes I, III and IV foresees the occurrence of their assembly in supercomplexes, providing additional functional properties when compared with randomly colliding isolated complexes. According to the plasticity model, the two structural states of the respiratory chain may interconvert, influenced by the intracellular prevailing conditions. In previous studies, we suggested the mitochondrial membrane potential as a factor for controlling their dynamic balance. Here, we investigated if and how the cAMP/PKA-mediated signalling influences the aggregation state of the respiratory complexes. An analysis of the inhibitory titration profiles of the endogenous oxygen consumption rates in intact HepG2 cells with specific inhibitors of the respiratory complexes was performed to quantify, in the framework of the metabolic flux theory, the corresponding control coefficients. The attained results, pharmacologically inhibiting either PKA or sAC, indicated that the reversible phosphorylation of the respiratory chain complexes/supercomplexes influenced their assembly state in response to the membrane potential. This conclusion was supported by the scrutiny of the available structure of the CI/CIII2/CIV respirasome, enabling us to map several PKA-targeted serine residues exposed to the matrix side of the complexes I, III and IV at the contact interfaces of the three complexes.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fosforilação
14.
J Biol Chem ; 299(10): 105241, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690688

RESUMO

Respiratory complexes and cardiolipins have exceptionally long lifetimes. The fact that they co-localize in mitochondrial cristae raises the question of whether their longevities have a common cause and whether the longevity of OXPHOS proteins is dependent on cardiolipin. To address these questions, we developed a method to measure side-by-side the half-lives of proteins and lipids in wild-type Drosophila and cardiolipin-deficient mutants. We fed adult flies with stable isotope-labeled precursors (13C615N2-lysine or 13C6-glucose) and determined the relative abundance of heavy isotopomers in protein and lipid species by mass spectrometry. To minimize the confounding effects of tissue regeneration, we restricted our analysis to the thorax, the bulk of which consists of post-mitotic flight muscles. Analysis of 680 protein and 45 lipid species showed that the subunits of respiratory complexes I-V and the carriers for phosphate and ADP/ATP were among the longest-lived proteins (average half-life of 48 ± 16 days) while the molecular species of cardiolipin were the longest-lived lipids (average half-life of 27 ± 6 days). The remarkable longevity of these crista residents was not shared by all mitochondrial proteins, especially not by those residing in the matrix and the inner boundary membrane. Ablation of cardiolipin synthase, which causes replacement of cardiolipin by phosphatidylglycerol, and ablation of tafazzin, which causes partial replacement of cardiolipin by monolyso-cardiolipin, decreased the lifetimes of the respiratory complexes. Ablation of tafazzin also decreased the lifetimes of the remaining cardiolipin species. These data suggest that an important function of cardiolipin in mitochondria is to protect respiratory complexes from degradation.


Assuntos
Cardiolipinas , Animais , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Músculos/metabolismo , Drosophila melanogaster
15.
Antioxidants (Basel) ; 12(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37507960

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor that produces immature osteoid. Metastatic OS has a poor prognosis with a death rate of >70%. Manoalide is a natural sesterterpenoid isolated from marine sponges. It is a phospholipase A2 inhibitor with anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to investigate the mechanism and effect of manoalide on OS cells. Our experiments showed that manoalide induced cytotoxicity in 143B and MG63 cells (human osteosarcoma). Treatment with manoalide at concentrations of 10, 20, and 40 µM for 24 and 48 h reduced MG63 cell viability to 45.13-4.40% (p < 0.01). Meanwhile, manoalide caused reactive oxygen species (ROS) overproduction and disrupted antioxidant proteins, activating the apoptotic proteins caspase-9/-3 and PARP (Poly (ADP-ribose) polymerase). Excessive levels of ROS in the mitochondria affected oxidative phosphorylation, ATP generation, and membrane potential (ΔΨm). Additionally, manoalide down-regulated mitochondrial fusion protein and up-regulated mitochondrial fission protein, resulting in mitochondrial fragmentation and impaired function. On the contrary, a pre-treatment with n-acetyl-l-cysteine ameliorated manoalide-induced apoptosis, ROS, and antioxidant proteins in OS cells. Overall, our findings show that manoalide induces oxidative stress, mitochondrial dysfunction, and apoptosis, causing the cell death of OS cells, showing potential as an innovative alternative treatment in human OS.

16.
Eur J Med Chem ; 258: 115577, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37352796

RESUMO

Human caseinolytic protease P (ClpP) is required for the regulatory hydrolysis of mitochondrial proteins. Allosteric ClpP agonists dysfunctionally activate mitochondrial ClpP in antileukemic therapies. We previously developed ZG111, a potent ClpP agonist derived from ICG-001, inhibits the proliferation of pancreatic ductal adenocarcinoma cell lines in vitro and in vivo by degrading respiratory chain complex proteins. Herein, we studied the structure-activity relationships of ICG-001 analogs as antileukemia agents. Compound ZG36 exhibited improved stabilization effects on the thermal stability of ClpP in acute myeloid leukemia (AML) cell lines compared with the stabilization effects of ZG111, indicating a direct binding between ZG36 and ClpP. Indeed, the resolved ZG36/ClpP structural complex reveals the mode of action of ZG36 during ClpP binding. Compound ZG36 nonselectively degrades respiratory chain complexes and decreases the mitochondrial DNA, eventually leading to the collapse of mitochondrial function and leukemic cell death. Finally, ZG36 treatment inhibited 3-D cell growth in vitro and suppressed the tumorigenesis of AML cells in xenografted mice models. Collectively, we developed a new class of human ClpP agonists that can be used as potential antileukemic therapies.


Assuntos
Leucemia Mieloide Aguda , Mitocôndrias , Animais , Humanos , Camundongos , Linhagem Celular , Endopeptidase Clp/química , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mitocôndrias/metabolismo , Relação Estrutura-Atividade
17.
Adv Exp Med Biol ; 1412: 211-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378769

RESUMO

Mitochondria play crucial roles in modulating immune responses, and viruses can in turn moderate mitochondrial functioning. Therefore, it is not judicious to assume that clinical outcome experienced in patients with COVID-19 or long COVID may be influenced by mitochondrial dysfunction in this infection. Also, patients who are predisposed to mitochondrial respiratory chain (MRC) disorders may be more susceptible to worsened clinical outcome associated with COVID-19 infection and long COVID. MRC disorders and dysfunction require a multidisciplinary approach for their diagnosis of which blood and urinary metabolite analysis may be utilized, including the measurement of lactate, organic acid and amino acid levels. More recently, hormone-like cytokines including fibroblast growth factor-21 (FGF-21) have also been used to assess possible evidence of MRC dysfunction. In view of their association with MRC dysfunction, assessing evidence of oxidative stress parameters including GSH and coenzyme Q10 (CoQ10) status may also provide useful biomarkers for diagnosis of MRC dysfunction. To date, the most reliable biomarker available for assessing MRC dysfunction is the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ. Moreover, the combined use of these biomarkers in a multiplexed targeted metabolic profiling strategy may further improve the diagnostic yield of the individual tests for assessing evidence of mitochondrial dysfunction in patients pre- and post-COVID-19 infection.


Assuntos
COVID-19 , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Síndrome de COVID-19 Pós-Aguda , Mitocôndrias/metabolismo , Biomarcadores
18.
Mitochondrion ; 71: 50-62, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201620

RESUMO

The antifungal activity of the drug micafungin, a cyclic lipopeptide that interacts with membrane proteins, may involve inhibition of fungal mitochondria. In humans, mitochondria are spared by the inability of micafungin to cross the cytoplasmic membrane. Using isolated mitochondria, we find that micafungin initiates the uptake of salts, causing rapid swelling and rupture of mitochondria with release of cytochrome c. The inner membrane anion channel (IMAC) is altered by micafungin to transfer both cations and anions. We propose that binding of anionic micafungin to IMAC attracts cations into the ion pore for the rapid transfer of ion pairs.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Micafungina/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ânions/metabolismo , Canais Iônicos/metabolismo
19.
Acta Pharmacol Sin ; 44(9): 1906-1919, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186123

RESUMO

Parthanatos is a type of programmed cell death initiated by over-activated poly (ADP-ribose) polymerase 1 (PARP1). Nuclear translocation of apoptosis inducing factor (AIF) is a prominent feature of parthanatos. But it remains unclear how activated nuclear PARP1 induces mitochondrial AIF translocation into nuclei. Evidence has shown that deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells via induction of excessive ROS. In this study we explored the downstream signal of activated PARP1 to induce nuclear translocation of AIF in DPT-triggered glioma cell parthanatos. We showed that treatment with DPT (450 nM) induced PARP1 over-activation and Tax1 binding protein 1 (TAX1BP1) distribution to mitochondria in human U87, U251 and U118 glioma cells. PARP1 activation promoted TAX1BP1 distribution to mitochondria by depleting nicotinamide adenine dinucleotide (NAD+). Knockdown of TAX1BP1 with siRNA not only inhibited TAX1BP1 accumulation in mitochondria, but also alleviated nuclear translocation of AIF and glioma cell death. We demonstrated that TAX1BP1 enhanced the activity of respiratory chain complex I not only by upregulating the expression of ND1, ND2, NDUFS2 and NDUFS4, but also promoting their assemblies into complex I. The activated respiratory complex I generated more superoxide to cause mitochondrial depolarization and nuclear translocation of AIF, while the increased mitochondrial superoxide reversely reinforced PARP1 activation by inducing ROS-dependent DNA double strand breaks. In mice bearing human U87 tumor xenograft, administration of DPT (10 mg· kg-1 ·d-1, i.p., for 8 days) markedly inhibited the tumor growth accompanied by NAD+ depletion, TAX1BP1 distribution to mitochondria, AIF distribution to nuclei as well as DNA DSBs and PARP1 activation in tumor tissues. Taken together, these data suggest that TAX1BP1 acts as a downstream signal of activated PARP1 to trigger nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I.


Assuntos
Glioma , Parthanatos , Humanos , Camundongos , Animais , Fator de Indução de Apoptose/genética , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NAD/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142133

RESUMO

Phenethyl isothiocyanate (PEITC), a kind of isothiocyanate available in cruciferous vegetables, exhibits inhibitory effects on cancers. PEITC has been extensively recorded for its effect on regulation of redox status in cancer cells. Our previous studies revealed that PEITC induced ROS-dependent cell death in osteosarcoma. Mitochondria are the main sites for ROS generation and play significant role in deciding cell fate. To dissect the mechanism of PEITC's action on osteosarcoma cells, we detected the changes on mitochondrial network, function and metabolism in K7M2 and 143B cells. Here, PEITC induced cytosolic, lipid and mitochondrial ROS production in osteosarcoma cells. It changed mitochondrial morphology from elongated to punctate network and decreased mitochondrial mass. Meantime, PEITC increased mitochondrial transmembrane potential in short time, decreased it with time prolonged, and later collapsed it in K7M2 cells, and reduced it in 143B cells. PEITC inhibited proliferation potential of osteosarcoma cells with damage on mitochondrial respiratory chain complexes. Further, PEITC-treated osteosarcoma cells experienced a sudden increase in ATP level, and later its content was decreased. Moreover, PEITC downregulated the expressions of mitochondrial respiratory chain complexes including COX IV, UQCR, SDHA and NDUFA9 in 143B cells and COX IV in K7M2 cells. At last, by using ρ0 cells derived from K7M2 and 143B cells, we found that osteosarcoma cells that depleted mtDNA were less sensitive to PEITC-induced changes on cellular morphology, cytoskeleton filament, mitochondrial transmembrane potential and ROS generation. In conclusion, our study demonstrated that mitochondria may play important role in PEITC-induced oxidative cell death in osteosarcoma cells.


Assuntos
Apoptose , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Morte Celular , Isotiocianatos/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxirredução , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA