Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(7): 674, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942963

RESUMO

Solar Fenton is an important and extensively used advanced oxidation process (AOP) to degrade pharmaceutical pollutants. The objective of this study was to evaluate the performance of simultaneous degradation of the mixed pollutants (amoxicillin, acetaminophen, and ciprofloxacin) for an aqueous solution using the solar Fenton process. Operating parameters such as pH, iron doses, H2O2 doses, pollutant concentrations, and time were studied. From the experimental results, the ideal conditions were obtained for the removal of mixed pollutants such as pH 3, Fe2+ 0.04 mM, H2O2 4 mM, the concentration of the mixed pollutants 5 mg/L, solar radiation 400 W/m2, and time 10 min, respectively. The pseudo-first-order kinetics were utilized to investigate the degradation efficacy of the mixed pollutants. The result of the study indicates that the degradation efficiency was > 99% for the mixed pollutants. A maximum of 63% mineralization was observed, and hydroxyl radical scavenger effects were studied. The best optimal conditions were applied to assess the spiked wastewater (municipal wastewater (MWW) and hospital wastewater (HWW)). The highest elimination rates for AMX, ACET, and CIP were observed as 65%, 89%, and 85% for MWW and 76%, 92%, and 80% for HWW, respectively. The degraded by-products were detected by LC-ESI-MS in the water matrix (aqueous solution and spiked wastewater), and ECOSAR analysis was performed for the transformed products. The study concluded that the solar Fenton technique is promising and effective for the removal of mixed pollutants from the water matrix.


Assuntos
Peróxido de Hidrogênio , Ferro , Luz Solar , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Cinética , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Oxirredução , Ciprofloxacina/química , Ciprofloxacina/análise , Acetaminofen/química , Acetaminofen/análise , Amoxicilina/química , Amoxicilina/análise
2.
Sci Total Environ ; 842: 156836, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750187

RESUMO

The development of efficacious photocatalysts for removal of heavy metal and dyes coexisting pollutants simultaneously remains a challenge. Herein, we designed a three-layered Pd@MIL-101/P25 composite photocatalyst, which had the characteristics of directional photogenerated carrier separation. Pd nanoparticles were encapsulated in the MIL-101 to enrich the e-, while P25 was loaded on the outer surface of MIL-101 as the valence band of the heterojunction with MIL-101 to enrich the h+. The photocatalytic kinetic constants (K) of Pd@MIL-101/P25 for the removal of Cr (VI) and RhB were 3.4 and 4.2 times greater than that of MIL-101, respectively. The photocatalytic efficiency of the catalyst in the mixed pollutants of Cr(VI) and RhB was much higher than that when Cr(VI) and RhB were present separately. Due to the 1.2 and 1.6 nm windows of MIL-101, two target pollutants can be directionally separated. Cr (VI) was reduced by e- on the inner surface, and RhB was blocked on the outer surface and oxidized by h+. These results suggested that the directional spatially separation of target pollutants are able to separate the reaction sites of oxidation and reduction, improving the utilization efficiency of photogenerated carriers. This work not only provided a new strategy for the design and construction of photocatalytic materials, but also provided a new idea for the treatment of mixed pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cromo , Luz , Estruturas Metalorgânicas , Rodaminas
3.
J Colloid Interface Sci ; 607(Pt 2): 1936-1943, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695742

RESUMO

A visible light-driven photoelectrocatalytic system was constructed based on Bi/Bi2O3/TiO2 nanotubes (NTs) to treat wastewater containing oxytetracycline and Cu2+ mixed pollutants. The surface morphology, crystal phase, elemental composition, light absorption property and photoelectrochemical activity of the synthesized Bi/Bi2O3/TiO2 NTs were investigated. The composite film, Bi/Bi2O3/TiO2 NTs was used for the photoelectrochemical removal of oxytetracycline, and it had excellent visible light photoelectrocatalytic performance. Under optimal conditions, the composite film was simultaneously used to remove coexisting oxytetracycline-Cu2+. The study results show that the reduction of Cu2+ on cathode was promoted by oxytetracycline while the degradation of oxytetracycline on photoanode was slightly suppressed by Cu2+. Also, possible photoelectrocatalytic degradation pathways for oxytetracycline-Cu2+ were analyzed by HPLC-MS.


Assuntos
Nanotubos , Oxitetraciclina , Catálise , Luz , Titânio
4.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684924

RESUMO

Graphitic carbon nitride (g-C3N4) with a porous nano-structure, nitrogen vacancies, and oxygen-doping was prepared by the calcination method. Then, it was combined with ZnIn2S4 nanosheets containing zinc vacancies to construct a three-dimensional (3D) flower-like Z-scheme heterojunction (pCN-N/ZIS-Z), which was used for photocatalytic hydrogen evolution and the degradation of mixed pollutants. The constructed Z-scheme heterojunction improved the efficiency of photogenerated charges separation and migration, and the large surface area and porous characteristics provided more active sites. Doping and defect engineering can change the bandgap structure to improve the utilization of visible light, and can also capture photogenerated electrons to inhibit recombination, so as to promote the use of photogenerated electron-hole pairs in the photocatalytic redox process. Heterojunction and defect engineering synergized to form a continuous and efficient conductive operation framework, which achieves the hydrogen production of pCN-N/ZIS-Z (9189.8 µmol·h-1·g-1) at 58.9 times that of g-C3N4 (155.9 µmol·h-1·g-1), and the degradation rates of methyl orange and metronidazole in the mixed solution were 98.7% and 92.5%, respectively. Our research provides potential ideas for constructing a green and environmentally friendly Z-scheme heterojunction catalyst based on defect engineering to address the energy crisis and environmental restoration.

5.
Crit Rev Biotechnol ; 41(5): 749-766, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33626996

RESUMO

The high demand for petroleum oil has led to hydrocarbon contamination in soil, including agricultural lands, and many other ecosystems across the globe. Physical and chemical treatments are effective strategies for the removal of high contamination levels and are useful for small areas, although with concerns of cost-effectiveness. Alternatively, several bacteria belonging to the Phylum: Proteobacteria, Bacteroidetes, Actinobacteria, Nocardioides, or Firmicutes are used for biodegradation of different hydrocarbons - aliphatic, polyaromatic hydrocarbons (PAH), and asphaltenes in the oil-contaminated soil. The rhizoremediation strategy with plant-microbe interactions has prospects to achieve the desired result in the field conditions. However, adequate biostimulation, and bioaugmentation with the suitable plant-microbe combination, and efficiency under a toxic environment needs to be evaluated. Modifying the microbiomes to achieve better biodegradation of contaminants is an upcoming strategy popularly known as microbiome engineering. In this review, rhizoremediation for the successful removal of the hydrocarbons have been critically discussed, with challenges for making it a feasible technology.HIGHLIGHTSPetroleum hydrocarbon contamination has increased around the globe.Rhizoremediation has the potential for the mitigation of pollutants from the contaminated sites.An accurate and detailed analysis of the physio-chemical and climatic conditions of the contaminated sites must be focused on.The suitable plant and bacteria, with other major considerations, may be employed for in-situ remediation.The appropriate data should be obtained using the omics approach to help toward the success of the rhizoremediation strategy.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Bioengenharia , Hidrocarbonetos , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise
6.
Anal Chim Acta ; 1143: 298-305, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384125

RESUMO

Determination of complex pollutants often involves many high-cost and laborious operations. Today's pop machine-learning (ML) technology has exhibited their amazing successes in image recognition, drug designing, disease detection, natural language understanding, etc. ML-driven samples testing will inevitably promote the development of related subjects and fields, but the biggest challenge ahead for this process is how to provide some intelligible and sufficient data for various algorithms. In this work, we present a full strategy for rapid detecting mixed pollutants through the synergistic application of holographic spectrum and convolutional neural network (CNN). The results have shown that a well-trained CNN model could realize quantitative analysis of the mixed pollutants by extracting spectral information of matters, suggesting the strategy's value in facilitating the study of complex chemical systems.

7.
Crit Rev Biotechnol ; 40(1): 31-45, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31656090

RESUMO

Phytoremediation uses plants and associated microbes to remove pollutants from the environment and is considered a promising bioremediation method. Compared with well-described single contaminant treatments, the number of studies reporting phytoremediation of soil mixed pollutants has increased recently. Endophytes, including bacteria and fungi, exhibit beneficial traits for the promotion of plant growth, stress alleviation, and biodegradation. Moreover, endophytes either directly or indirectly assist host plants to survive high concentrations of organic and inorganic pollutants in the soil. Endophytic microorganisms can also regulate the plant metabolism in different ways, exhibiting a variety of physiological characteristics. This review summarizes the taxa and physiological properties of endophytic microorganisms that may participate in the detoxification of contaminant mixtures. Furthermore, potential biomolecules that may enhance endophyte mediated phytoremediation are discussed. The practical applications of pollutant-degrading endophytes and current strategies for applying this valuable bio-resource to soil phytoremediation are summarized.


Assuntos
Endófitos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Metais/metabolismo , Compostos Orgânicos/metabolismo
8.
Gen Comp Endocrinol ; 244: 40-53, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26921447

RESUMO

Numerous environmental stressors exert acute or chronic effects on the fish thyroid cascade. Such effects could be mediated via thyroidal alterations, imbalance of plasma T4 and T3 levels or damage to the structure of the thyroidal tissues (thyroid hypertrophy, hyperplasia). The thyroidal system is intricately linked to other endocrine systems in vertebrates including the control of reproduction. Disruption of fish thyroid function by environmental stressors has the potential to result in deleterious effects including the inhibition of sperm production, reduction in egg production, gonad development, ovarian growth, swimming activity, fertilisation and increase in larval mortality. Thyroid hormones play a major role in the development and growth of fish, particularly during their early life stages, thus, thyroid disruption by environmental stressors could inhibit the growth of fish larvae and juveniles in wild fish and cultured species, limit fish seed production and result in a decline in wild fisheries. This review highlights the effects of several environmental toxicants including PBDE, PCBs, PCDD and PCDF, PAH/oil, phthalates, metals, pesticides, mixed pollutants/chemicals, cyanide; and other stressors including acid (low pH) and ammonia, on fish thyroid function. Environmental sources of chemical stressors and appropriate water quality guidelines to protect the freshwater and marine species for the relevant pollutants are also discussed including (when available) the Australian guidelines (2000) and Canadian water quality guidelines (where Australian guidelines are not available). To date there has been no published research on the effects of anthropogenic environmental pollutants on the thyroid system of any native Australian fish species. However, the detection of high risk chemicals (notably PBDEs, PCBs, PAHs, metals and pesticides) in Australian waterways and Australian fish and shellfish implies that thyroid disruption of Australian wild fish and aquacultured species could occur. It is therefore imperative that the effects of such pollutants on the thyroid system of Australian native fish be investigated.


Assuntos
Poluentes Ambientais/farmacologia , Peixes , Glândula Tireoide/química , Animais , Aquicultura , Austrália , Pesqueiros , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA