Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Life ; 16(8): 1194-1200, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38024817

RESUMO

Autoimmune rheumatoid arthritis (RA) is a systemic condition closely correlated with a variety of autoantibodies (Abs) that could be considered diagnostic and prognostic markers. The current research was designed to detect the diagnostic values for a number (n) of these auto-Abs in RA detection and to evaluate the accuracy of a combined diagnostic scheme. This prospective study was conducted between September 2021 and August 2022 and included 110 subjects with RA, 70 individuals with other autoimmune disorders as positive controls (PC), and 50 unrelated, apparently healthy individuals as healthy controls (HC). The eligibility criteria for all study groups were followed stringently. An enzyme-linked immunosorbent assay (ELISA) was employed to measure rheumatoid factors (RF), cyclic citrullinated peptide antibodies (CCP-Abs), mutated citrullinated vimentin antibodies (MCV-Abs), anti-perinuclear factor antibodies (APF-Abs), and anti-keratin antibodies (AKA). We calculated the specificity, sensitivity, and predictive values of all auto-Abs. Significantly higher levels of anti-CCP-Abs, anti-MCV-Abs, APF-Abs, and AKAs were reported in the RA patients compared to the HC and PC subjects. RF levels, however, were only statistically elevated when compared to the HC individuals. Anti-APF-Abs had a higher sensitivity rate (70.9%), and anti-CCP-Abs had a higher specificity rate (94.16%) compared to other auto-Abs, whereas the combined detection scheme revealed a higher sensitivity (81.81%) and excellent specificity (90.83%) compared to the two former auto-Abs. Anti-perinuclear factor-Ab was a highly sensitive test, and CCP-Ab was a surpassingly specific assay for identifying RA. Furthermore, the combined detection scheme is an essential serological approach for RA diagnosis and crucial in differentiating this disease from other autoimmune diseases, thus promoting early diagnosis and treatment.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Humanos , Estudos Prospectivos , Artrite Reumatoide/diagnóstico , Autoanticorpos , Fator Reumatoide , Ensaio de Imunoadsorção Enzimática , Peptídeos Cíclicos , Biomarcadores
2.
J Mass Spectrom Adv Clin Lab ; 25: 27-35, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35721272

RESUMO

Introduction: Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting. Methods: Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology. Results: The calibration ranges were 20 - 5000 and 100 - 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99-1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at -20 °C. No interference, matrix effects, or carryover was discovered during the validation process. Conclusions: PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.

3.
Saudi J Biol Sci ; 29(4): 2878-2885, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531181

RESUMO

The chromate resistant Gram-positive Bacillus cereus strain b-525k was isolated from tannery effluents, demonstrating optimal propagation at 37 °C and pH 8. The minimum inhibitory concentration (MIC) test showed that B. cereus b-525k can tolerate up to 32 mM Cr6+, and also exhibit the ability to resist other toxic metal ions including Pb2+ (23 mM), As3+ (21 mM), Zn2+ (17 mM), Cd2+ (5 mM), Cu2+ (2 mM), and Ni2+ (3 mM) with the resistance order as Cr 6+ > Pb2+ > As3+ >Zn2+ >Cd2+ >Ni2+ >Cu2+. B. cereus b-525k showed maximum biosorption efficiency (q) of 51 mM Cr6+/g after 6 days. Chromate stress elicited pronounced production of antioxidant enzymes such as catalase (CAT) 191%, glutathione transferase (GST) 192%, superoxide dismutase (SOD) 161%, peroxidase (POX) 199%, and ascorbate peroxidase (APOX) (154%). Within B. cereus b-525k, the influence of Cr6+ stress (2 mM) did stimulate rise in levels of GSH (907%) and non-protein thiols (541%) was measured as compared to the control (without any Cr6+ stress) which markedly nullifies Cr6+ generated oxidative stress. The pilot scale experiments utilizing original tannery effluent showed that B. cereus b-525k could remove 99% Cr6+ in 6 days, thus, it could be a potential candidate to reclaim the chromate contaminated sites.

4.
Saudi J Biol Sci ; 29(3): 1487-1500, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280553

RESUMO

In the present study, 30 potential germplasm of oat (Avena sativa L.) were subjected to proximate, elemental, and HPLC analysis to provide a scientific basis to genetic diversity present among them. The extracts of the selected germplasms were also evaluated for their antioxidant potentials through DPPH and ABTS assays. Proximate analysis showed protein contents to be in the range 8.35-17.72% with the highest protein contents in the accession line 22,365 (17.72 ± 0.38%). The genotype-725 showed the highest carbohydrate, and dry matter (53.35 ± 0.01 and 93.50 ± 0.07% respectively) contents whereas, the germplasm-830 contained the highest fat (7.88 ± 0.12%) contents while the highest moisture contents were there in germplasm-22348 (11.95 ± 0.06%). The crude fiber contents (19.67 ± 0.19%) were found high in germplasm-832. The mentioned contents were also correlated to each other where a negative (-0.431*) correlation was noted for crude protein and carbohydrate while ash content to crude protein has a positive (0.38*) correlation. A positive and a negative correlation were there in Crude fats/crude protein (0.30*) and crude fats/moisture contents (-0.39*) respectively. Principal component analysis showed an Eigenvalue of 0.76 with a total variation of 85.01% when applied to proximate components. Based on cluster analysis to proximate composition all the oat germplasms were divided into 5 sub-clusters, where accession numbers 769 and 817 were found to be the most diverse genotypes. The elemental analysis confirmed the presence of magnesium (2.89-7.62 mg/L), sodium (3.71-8.03 mg/L), manganese (0.93-3.71 mg/L), copper (0.35-3.36 mg/L), iron (2.15-6.82 mg/L), zinc (1.30-3.37 mg/L), chromium (0.37-3.34 mg/L), and potassium (50.70-59.60 mg/L) in the selected germplasms. Principal component analysis for elemental composition showed the total variation of 73.75% with the Eigenvalue of 0.97. Cluster analysis on an elemental basis divided all the oat germplasms into 7 sub-clusters where accession numbers 769 and 22,350 were found to be the most diverse germplasm. Phytochemical analysis performed through HPLC resulted in the identification of nine possible compounds (malic acid, epigallocatechin gallate, quercetin, morin, ellagic acid, catechin hydrate, rutin, pyrogallol, and mandelic acid) in various germplasm of oat. A concentration-dependent antioxidant response was recorded when extracts were tested as an inhibitor of DPPH and ABTS free radicals. The results revealed that oat grains are a good source of nutrients, minerals, and phytochemicals that can be used as nutraceuticals and as food. The genetic differences revealed that this plant can be grown under varied environmental conditions.

5.
Saudi J Biol Sci ; 29(1): 550-563, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35002451

RESUMO

The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.

6.
J Bone Oncol ; 28: 100357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33912384

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary bone tumor and the third leading cause of pediatric cancer deaths. Liquid biopsies are an alternative to current diagnostic imaging modalities that can be used to monitor treatment efficacy and the development of metastases. This study addresses the use of novel biomarkers to detect circulating osteosarcoma cells. PROCEDURES: Flow cytometry was used to evaluate the relative expression of epithelial cell adhesion molecule (EpCAM), ganglioside 2 and 3 (GD2/3), and cell surface vimentin (CSV) on a panel of OS cell lines. A microfluidic device was used to affirm the efficacy of GD2/3 and CSV to capture CTCs. Once captured, CTCs on the device are enumerated and the capture efficiency for each marker is measured. Patient samples were captured using the LFAM chip. RESULTS: We report the evaluation of GD2, GD3, and CSV as markers for OS cell capture in cell lines and in patient samples. The results of our capture studies correlate with our flow cytometry data and have shown a low capture efficiency of OS cells using EpCAM antibodies, while showing a moderate capture efficiency of OS cells using the GD2, GD3, and CSV antibodies independently. The combination of biomarkers demonstrate a high capture efficiency of approximately 80%. This is further supported by the detection of 1-1.5 CTCs per mL of blood using GD2 + CSV in OS patient samples. CONCLUSIONS: The combination of GD2 + CSV significantly increased the capture efficacy of OS cells. The detection of CTCs through routine blood sampling may be used clinically for earlier detection of metastases and monitoring the therapeutic effect of treatments in metastatic osteosarcomas.

7.
J Tradit Complement Med ; 10(6): 594-598, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33134136

RESUMO

BACKGROUND AND AIM: Kaffir lime fruit peel oil and Kaffir lime leaf oil have been reported for their activities against respiratory tract pathogens. The purpose of the study was to develop clear oral sprays to be used as a first-defense oral spray. EXPERIMENTAL PROCEDURE: Clear antibacterial oral sprays were prepared and analyzed for their respective active major compounds, using GC-MS. The sprays were tested against a Gr. A streptococcal clinical isolate and 3 standard respiratory tract pathogens, using Broth microdilution method. A 4-month stability test was carried out as well. RESULTS AND CONCLUSION: Six clear oral sprays, three formulae composed of Kaffir lime fruit peel oil (6, 10, 13%v/v KLO) and the other three formulae containing Kaffir lime leaf oil (4, 8, 12%v/v KLLO), were developed. The active compounds in KLO were α-terpineol and terpinene-4-ol whereas that in KLLO was citronellal. All oral sprays exhibited antibacterial activity against one Group A streptococcal clinical isolate and three respiratory pathogenic pathogens, Staphylococcus aureus ATCC 29213, Streptococcus pneumoniae ATCC 49619, and Haemophilus influenzae ATCC 49247, among which the strongest activity was against H. influenzae ATCC 49247. The antibacterial activity of all oral sprays remained unchanged in an accelerated stability test, at 4, 30, and 45 °C under 75% relative humidity, throughout the 4-month storage.

8.
J Clin Exp Hepatol ; 9(2): 257-267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024208

RESUMO

Small intestinal bacterial overgrowth (SIBO) is defined by increased density and/or abnormal composition of microbiota in the small bowel. SIBO is often encountered in patients with cirrhosis as a result of impaired intestinal motility and delayed transit time, both of which are exacerbated by more severe liver disease. Additional risk factors for SIBO commonly encountered in cirrhotic patients include coexisting diabetes, autonomic neuropathy, and/or alcoholic use. Diagnosis of SIBO is performed by breath testing or jejunal aspiration, the gold standard. In cirrhotic patients, the presence of SIBO can lead to profound clinical consequences. Increased intestinal permeability in these patients predisposes to bacterial translocation into the systemic circulation. As a result, SIBO is implicated as a significant risk factor in the pathogenesis of both spontaneous bacterial peritonitis and hepatic encephalopathy in cirrhotics. Antibiotics, especially rifaximin, are the best studied and most effective treatment options for SIBO. However, prokinetics, probiotics, nonselective beta-blockers, and treatment of underlying liver-related pathophysiology with transjugular intrahepatic portosystemic shunt placement or liver transplantation are also being investigated. This review will discuss the risk factors, diagnosis, manifestations in cirrhosis, and treatment options of SIBO.

9.
Biochem Biophys Rep ; 10: 237-251, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955752

RESUMO

The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran and dextrin to structure an ideal bone scaffold with adequate degradation rate using the Freeze Drying Method (FDM) and labeled as 5211, 5400, 6211, 6300, 7101, 7200 and 8100. The micron sized cockle shells powder obtained (75 µm) was made into nanoparticles using mechano-chemical, top-down method of nanoparticles synthesis with the presence of the surfactant BS-12 (dodecyl dimethyl bataine). The phase purity and crystallographic structures, the chemical functionality and the thermal characterization of the scaffolds' powder were recognized using X-Ray Diffractometer (XRD), Fourier transform infrared (FTIR) spectrophotometer and Differential Scanning Calorimetry (DSC) respectively. Characterizations of the scaffolds were assessed by Scanning Electron Microscopy (SEM), Degradation Manner, Water Absorption Test, Swelling Test, Mechanical Test and Porosity Test. Top-down method produced cockle shell nanoparticles having averagely range 37.8±3-55.2±9 nm in size, which were determined using Transmission Electron Microscope (TEM). A mainly aragonite form of calcium carbonate was identified in both XRD and FTIR for all scaffolds, while the melting (Tm) and transition (Tg) temperatures were identified using DSC with the range of Tm 62.4-75.5 °C and of Tg 230.6-232.5 °C. The newly prepared scaffolds were with the following characteristics: (i) good biocompatibility and biodegradability, (ii) appropriate surface chemistry and (iii) highly porous, with interconnected pore network. Engineering analyses showed that scaffold 5211 possessed 3D interconnected homogenous porous structure with a porosity of about 49%, pore sizes ranging from 8.97 to 337 µm, mechanical strength 20.3 MPa, Young's Modulus 271±63 MPa and enzymatic degradation rate 22.7 within 14 days.

10.
Saudi Pharm J ; 24(6): 689-697, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27829812

RESUMO

The aim of the paper was to formulate a combined oral dosage form of rosuvastatin calcium and amlodipine besylate and to develop and validate an analytical method to be adopted for both routine quality control assay and in vitro dissolution studies of the formulation. The proposed combination formulation has shown compatibility with the chosen excipients, verified through FT-IR study. A novel gradient RP-HPLC method was developed and validated according to the ICH guideline which was found to be suitable for the simultaneous estimation of rosuvastatin calcium and amlodipine besylate from the formulation. The retention time of 2.7 and 6.08 min allows the analysis of large amount of samples with less mobile phase which makes the method economic. The dissolution profiles of both the drugs in different dissolution medium were encouraging which makes the combination formulation of rosuvastatin calcium and amlodipine besylate superior and effective in achieving patient compliance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA