Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Mikrochim Acta ; 191(8): 502, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093358

RESUMO

An electrochemical sensor assisted by primer exchange reaction (PER) and CRISPR/Cas9 system (PER-CRISPR/Cas9-E) was established for the sensitive detection of dual microRNAs (miRNAs). Two PER hairpin (HP) were designed to produce a lot of extended PER products, which could hybridize with two kinds of hairpin probes modified on the electrode and initiate the cleavage of two CRISPR/Cas9 systems guided by single guide RNAs (sgRNAs) with different recognition sequences. The decrease of the two electrochemical redox signals indicated the presence of dual-target miRNAs. With the robustness and high specificity of PER amplification and CRISPR/Cas9 cleavage system, simultaneous detection of two targets was achieved and the detection limits for miRNA-21 and miRNA-155 were 0.43 fM and 0.12 fM, respectively. The developed biosensor has the advantages of low cost, easy operation, and in-situ detection, providing a promising platform for point-of-care detection of multiple miRNAs.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Limite de Detecção , MicroRNAs , MicroRNAs/análise , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética
2.
Mikrochim Acta ; 191(8): 499, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088080

RESUMO

The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.


Assuntos
Alginatos , Técnicas Biossensoriais , Criogéis , DNA , Técnicas Eletroquímicas , DNA/química , Técnicas Eletroquímicas/métodos , Animais , Criogéis/química , Alginatos/química , Técnicas Biossensoriais/métodos , Eletrodos , Peixes , Masculino , Carragenina/química , Polissacarídeos/química , Polissacarídeos/análise , Pirróis/química , Espermatozoides/química , Limite de Detecção , Polímeros
3.
ChemSusChem ; : e202400582, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953395

RESUMO

In the chemical industry, formaldehyde is an important bulk chemical. The traditional synthesis of formaldehyde involves an energy intensive oxidation of methanol over a metal oxide catalyst. The selective electrochemical oxidation of methanol is challenging. Herein, we report a catalytic system with an immobilized TEMPO electrode that selectively oxidizes methanol to formaldehyde with high turnover numbers. Upon the addition of various organic and inorganic bases, the activity of the catalyst could be tuned. The highest Faradaic efficiency that was achieved was 97.5 %, the highest turnover number was 17100. Additionally, we found that the rate determining step changed from the step in which the carbonyl specie is created from the methanol-TEMPO adduct to the oxidative regeneration of the TEMPO+ species. Finally, we showed that the system could be applied to the oxidation of other aliphatic alcohols.

4.
Mikrochim Acta ; 191(8): 443, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955844

RESUMO

CoFe@C was first prepared by calcining the precursor of CoFe-metal-organic framework-74 (CoFe-MOF-74), then an electrochemical sensor for the determination of neohesperidin dihydrochalcone (NHDC) was constructed, which was stemmed from the novel CoFe@C/Nafion composite film modified glassy carbon electrode (GCE). The CoFe@C/Nafion composite was verified by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS) was used to evaluate its electrical properties as a modified material for an electrochemical sensor. Compared with CoFe-MOF-74 precursor modified electrode, CoFe@C/Nafion electrode exhibited a great synergic catalytic effect and extremely increased the oxidation peak signal of NHDC. The effects of various experimental conditions on the oxidation of NHDC were investigated and the calibration plot was tested. The results bespoken that CoFe@C/Nafion GCE has good reproducibility and anti-interference under the optimal experimental conditions. In addition, the differential pulse current response of NHDC was linear with its concentration within the range 0.08 ~ 20 µmol/L, and the linear regression coefficient was 0.9957. The detection limit was as low as 14.2 nmol/L (S/N = 3). In order to further verify the feasibility of the method, it was successfully used to determine the content of NHDC in Chinese medicine, with a satisfactory result, good in accordance with that of high performance liquid chromatography (HPLC).


Assuntos
Chalconas , Cobalto , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Estruturas Metalorgânicas , Cobalto/química , Estruturas Metalorgânicas/química , Chalconas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Hesperidina/análogos & derivados , Hesperidina/análise , Hesperidina/química , Polímeros de Fluorcarboneto/química , Oxirredução , Carbono/química , Reprodutibilidade dos Testes , Ferro/química
5.
Mikrochim Acta ; 191(8): 472, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028442

RESUMO

A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N3) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , MicroRNAs , Titânio , Técnicas Biossensoriais/métodos , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Titânio/química , Catálise , Processos Fotoquímicos , Humanos , Polimerização , Silanos/química
6.
Mikrochim Acta ; 191(8): 456, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980419

RESUMO

Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Grafite , Indóis , Limite de Detecção , Nanopartículas Metálicas , Polímeros , Técnicas Biossensoriais/métodos , Indóis/química , Polímeros/química , Técnicas Eletroquímicas/métodos , Grafite/química , Ouro/química , Animais , Nanopartículas Metálicas/química , Mycobacterium tuberculosis , Bivalves/química , Nanocompostos/química , Eletrodos , Norepinefrina/análise
7.
Mikrochim Acta ; 191(8): 475, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037453

RESUMO

A novel electrochemical method is presented for ultrasensitive detection of the organophosphate pesticide (OPP) fenitrothion by using Ti3C2 MXene/CoAl-LDH nanocomposite as the electrode modifier. The Ti3C2 MXene/CoAl-LDH nanocomposite is synthesized by growing CoAl-LDH in situ on MXene nanosheets. The combination of two ultrathin 2D materials provides more active sites, larger specific surface area, superior adsorption properties, and better electrical conductivity, which leads to rapid electron-transfer and mass-transfer between the substrate electrode and analytes when it is acted as the electrochemical sensing material. In addition, through the chelation of phosphate groups with the Ti defect sites enriched in MXene, OPP is adsorbed on the electrode. Consequently, the corresponding modified electrode gives rise to a wide linear response range of 0.03 ~ 120 µmol/L for the differential pulse voltammetry detection of fenitrothion with a low detection limit of 5.8 nmol/L (3σ). The method offers good repeatability, stability, selectivity, and practicability for real samples. This strategy provides a reference platform for the electrochemical monitoring of trace OPPs residue by using MXene/LDH-based nanocomposites.

8.
Heliyon ; 10(11): e31060, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832273

RESUMO

Resulted from the severe side effects, the development of inexpensive, simple and sensitive method for amethopterin (ATP, an antineoplastic drug) is very important but it still remains a challenge. In this work, low cost nanohybrid composed of carbon nanobowl (CNB) and ß-cyclodextrins (ß-CD) (CNB-CD) was prepared with a simple autopolymerization way and applied as electrode material to develop a novel electrochemical sensor of ATP. Scanning-/transmission-electron microscopy, Fourier transform infrared spectrum, photographic image and electrochemical technologies were utilized to characterize morphologies and structure of the as-prepared CNB and CNB-CD materials. On the basic of the coordination advantages from CNB (prominent electrical property and surface area) and ß-CD (superior molecule-recognition and solubility capabilities), the CNB-CD nanohybrid modified electrode exhibits superior sensing performances toward ATP, and a low detection limit of 0.002 µM coupled with larger linearity of 0.005-12.0 µM are obtained. In addition, the as-prepared sensor offers desirable repeatability, stability, selectivity and practical application property, confirming that this proposal may have important applications in the determination of ATP.

9.
Talanta ; 277: 126391, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861764

RESUMO

An edible Mushroom-Nafion modified glassy carbon electrode (M2N5-GCE) was prepared using a homogeneous mixture varying the concentrations of these, in addition to the origin of the mushroom (Shiitake, Lentinula edodes, M1 and Abrantes, Agariscus bisporus, M2) and applied to the As(III) determination by anodic stripping voltammetry. After choosing the optimal conditions in the preparation of the electrode, the second stage was to study the effects of various parameters such as supporting electrolyte, pH, accumulation potential, and time (Eacc, tacc). The optimum experimental conditions chosen were Britton Robinson buffer 0.01 mol L-1 pH:4.6; Eacc: -1.0 and tacc: 60 s obtaining a signal of oxidation of As(0) to As(III) about 0.08 V. Peak current was proportional to arsenic concentration over the 19.6-117.6 µg L-1 range, with a 3σ detection limit of 13.4 µg L-1. The method was validated using As(III) spiked tap water from the laboratory with satisfactory results (RE:3.0 %). Finally, the method was applied to the determination of As(III) in water samples from the Loa River (Northern Chile) in the presence of As(V) in a concentration >20 times higher (RE: 2.3 %).


Assuntos
Agaricales , Arsênio , Carbono , Eletrodos , Polímeros de Fluorcarboneto , Polímeros de Fluorcarboneto/química , Carbono/química , Arsênio/análise , Arsênio/química , Agaricales/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Eletroquímica
10.
Mikrochim Acta ; 191(7): 380, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858258

RESUMO

A sensing interface co-constructed from the two-dimensional conductive material (Ag@MXene) and an antifouling cyclic multifunctional peptide (CP) is described. While the large surface area of Ag@MXene loads more CP probes, CP binds to Ag@MXene to form a fouling barrier and ensure the structural rigidity of the targeting sequence. This strategy synergistically enhances the biosensor's sensitivity and resistance to contamination. The SPR results showed that the binding affinity of the CP to the target was 6.23 times higher than that of the antifouling straight-chain multifunctional peptide (SP) to the target. In the 10 mg/mL BSA electrochemical fouling test, the fouling resistance of Ag@MXene + CP (composite sensing interface of CP combined with Ag@MXene) was 30 times higher than that of the bare electrode. The designed electrochemical sensor exhibited good selectivity and wide dynamic response range at PD-L1 concentrations from 0.1 to 50 ng/mL. The lowest detection limit was 24.54 pg/mL (S/N = 3). Antifouling 2D materials with a substantial specific surface area, coupled with non-straight chain antifouling multifunctional peptides, offer a wide scope for investigating the sensitivity and antifouling properties of electrochemical sensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Peptídeos Cíclicos , Prata , Prata/química , Técnicas Eletroquímicas/métodos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/sangue , Técnicas Biossensoriais/métodos , Humanos , Incrustação Biológica/prevenção & controle , Eletrodos
11.
Mikrochim Acta ; 191(7): 383, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861005

RESUMO

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Estradiol , Ouro , Limite de Detecção , Nanocompostos , Sulfetos , Compostos de Estanho , Compostos de Estanho/química , Aptâmeros de Nucleotídeos/química , Nanocompostos/química , Ouro/química , Estradiol/análise , Estradiol/sangue , Estradiol/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Sulfetos/química , Cádmio/química , Cádmio/análise , Processos Fotoquímicos , Dispositivos Lab-On-A-Chip
12.
Mikrochim Acta ; 191(7): 392, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874768

RESUMO

A self-powered photoelectrochemical (PEC) aptamer sensor based on ZnIn2S4 as the photoanode and Cu2O@Ag@Ag3PO4 as the sensing cathode is designed for the detection of Hg2+. An indium tin oxide (ITO) electrode modified with ZnIn2S4 was used instead of a platinum (Pt) counter electrode to provide an obviously stable photocurrent signal. The suitable band gap width of ZnIn2S4 can generate photogenerated electrons well. The unique hydrangea structure of ZnIn2S4 can enhance light absorption and accelerate the separation and transfer of photocarriers. At the same time, Cu2O@Ag@Ag3PO4 with excellent electrical conductivity further enhances the photocurrent provided by the ZnIn2S4 photoanode. Because the reducing substances in the biological medium can change the photoanode characteristics of the photoanode interface, the separation of the photoanode and the sensing bicathode is beneficial to improve the anti-interference ability of the sensor. Under optimized conditions, the PEC aptamer sensor realizes the detection of Hg2+ (1 mM-1 fM), and the detection limit is 0.4 fM. In addition, the constructed self-powered PEC sensor has good selectivity, repeatability, and stability, which provides a new idea for the design of the PEC aptamer sensor platform.

13.
Mikrochim Acta ; 191(7): 409, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898141

RESUMO

Amlodipine (AM) is a long active calcium channel blocker used to relax blood vessels by preventing calcium ion transport into the vascular walls and its supporting molecules acetaminophen (AP) and ascorbic acid (AA) are recommended for hypertension control and prevention. Considering their therapeutic importance and potential side effects due to over dosage, we have fabricated a sensor for individual and simultaneous determination of AA, AP, and AM in pharmaceuticals and human urine using novel Zn-doped Ca2CuO3 nanoparticles modified glassy carbon electrode (GCE). Optimally doped Ca2CuO3 (2.5 wt% Zn at Cu site) enhanced the detection of target molecules over much wider concentration ranges of 50 to 3130 µM for AA, 0.25 to 417 µM for AP, and 0.8 to 354 µM for AM with the corresponding lowest detection limits of 14 µM, 0.05 µM, and 0.07 µM, respectively. Furthermore, the Zn-Ca2CuO3/GCE exhibited excellent selectivity and high sensitivity even in the presence of several potential interfering agents. The usefulness of the developed electrode was tested using an amlodipine besylate tablet and urine samples of seven hypertension patients under medication. The results confirmed the presence of a significant amount of AP and AM in six patients' urine samples indicating that the personalized medication is essential and the quantum of medication need to be fixed by knowing the excess medicines excreted through urine. Thus, the Zn-Ca2CuO3/GCE with a high recovery percentage and good sensitivity shall be useful in the pharmaceutical and biomedical sectors.


Assuntos
Acetaminofen , Anlodipino , Ácido Ascórbico , Cobre , Eletrodos , Hipertensão , Zinco , Anlodipino/urina , Anlodipino/análise , Humanos , Ácido Ascórbico/urina , Cobre/química , Acetaminofen/urina , Zinco/química , Zinco/urina , Hipertensão/tratamento farmacológico , Hipertensão/urina , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Nanopartículas Metálicas/química , Nanopartículas/química , Carbono/química
14.
Biosensors (Basel) ; 14(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38920614

RESUMO

Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged for long periods, and bioaccumulate. The detection and especially the quantification of metals require a systematic process. Regular monitoring is necessary because of seasonal variations in metal levels. Consequently, there is a significant need for rapid and low-cost metal determination methods. In this study, we compare and analytically validate absorption spectrometry with a sensitive voltammetric method, which uses a bismuth film-plated electrode surface and applies stripping voltammetry. Atomic absorption spectroscopy (AAS) represents a well-established analytical technique, while the applicability of anodic stripping voltammetry (ASV) in complicated sample matrices such as soil samples is currently unknown. This sample-handling challenge is investigated in the present study. The results show that the AAS and ASV methods were satisfactorily correlated and showed that the metal concentration in soils was lower than the limit values but with an increasing trend. Therefore, continuous monitoring of metal levels in the urban complex of a city is necessary and a matter of great importance. The limits of detection of cadmium (Cd) were lower when using the stripping voltammetry (SWASV) graphite furnace technique compared with those obtained with AAS when using the graphite furnace. However, when using flame atomic absorption spectroscopy (flame-AAS), the measurements tended to overestimate the concentration of Cd compared with the values found using SWASV. This highlights the differences in sensitivity and accuracy between these analytical methods for detecting Cd. The SWASV method has the advantage of being cheaper and faster, enabling the simultaneous determination of heavy elements across the range of concentrations that these elements can occur in Mediterranean soils. Additionally, a dsDNA biosensor is suggested for the discrimination of Cu(I) along with Cu(II) based on the oxidation peak of guanine, and adenine residues can be applied in the redox speciation analysis of copper in soil, which represents an issue of great importance.


Assuntos
Bismuto , DNA , Eletrodos , Metais Pesados , Solo , Bismuto/química , Bismuto/análise , Metais Pesados/análise , Solo/química , Técnicas Biossensoriais , Poluentes do Solo/análise , Técnicas Eletroquímicas , Espectrofotometria Atômica , Cádmio/análise
15.
Mikrochim Acta ; 191(6): 336, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777836

RESUMO

A nanocomposite of Ce-doped ZnO/r-GO was synthesized using a conventional hydrothermal method. The synthesized nanocomposites were utilized for the purpose of sensitive and selective detection of cyclobenzaprine hydrochloride (CBP). The properties of the composite were extensively analyzed, including its morphology, structure, and electrochemical behavior. This study investigates the application of a modified glassy carbon electrode for the detection of CBP, a muscle relaxant used to treat musculoskeletal diseases that cause muscle spasms. The electrode is modified with Ce-doped ZnO/r-GO. Various detection methods, such as cyclic voltammetric and square wave techniques (SWV), were utilized. The composite material showed high effectiveness as an electron transfer mediator in the oxidation of CBP. The electrode showed a good response for SWV evaluations in CBP identification, with a minimum detection limit of 1.6 × 10-8 M and a wide linear range from 10 × 10-6 M to 0.6 × 10-7 M, under ideal conditions. The rate constant for charge transfer (ks) and the estimation of the electrochemical active surface area were obtained. A developed sensor exhibited desirable selectivity, long-lasting stability, and remarkable reproducibility. A sensor was used to analyze water, human serum, and urine samples, resulting in positive recovery results.


Assuntos
Amitriptilina , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Óxido de Zinco , Óxido de Zinco/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Amitriptilina/química , Amitriptilina/urina , Amitriptilina/sangue , Amitriptilina/análogos & derivados , Nanocompostos/química , Humanos , Relaxantes Musculares Centrais/química , Relaxantes Musculares Centrais/urina , Relaxantes Musculares Centrais/sangue , Relaxantes Musculares Centrais/análise , Reprodutibilidade dos Testes
16.
Mikrochim Acta ; 191(6): 342, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795174

RESUMO

An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO2/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO2 nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO2/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO2 and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 µM and 0.03-60.53 µM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO2/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.

17.
Mikrochim Acta ; 191(6): 358, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819654

RESUMO

A signal-amplified platform was designed to construct a label-free electrochemical aptasensor for lead ions (Pb2+) assay. First, flower-like molybdenum disulfide-supported AuNPs (AuNPs@MoS2) nanocomposites were synthesized and used as substrates for modifying the electrode. The AuNPs@MoS2 material possessed large surface area and superior biocompatibility, which was beneficial to improve the loading amount of the complementary DNA (cDNA) and amplified the response signal. Importantly, the prepared core-shell Pt@Pd bimetallic nanoparticles (Pt@PdNPs) were used to conjugate with redox marker thionine (Thi) and aptamer (Apt) for further signal amplification; the obtained signal probes (Thi-Pt@PdNPs-Apt) were connected by the cDNA assembled on the electrode through DNA hybridization. Differential pulse voltammetry was performed to monitor the signal of Thi. After incubating of aptasensor with Pb2+, the specific recognition of Pb2+ and Apt resulted in the dissociation of aptamer-cDNA complex, thereby the Thi-Pt@PdNPs-Apt separated from the electrode surface and decreased current response was obtained. The prepared electrochemical sensor exhibited linear response to Pb2+ in the range 5.0 × 10-4-100 nM and a detection limit of 1.0 × 10-4 nM was achieved. The sensor was applied to the determination of Pb2+ in actual sample with high sensitivity and accuracy, demonstrating potential applications in heavy metal monitoring.

18.
ADMET DMPK ; 12(2): 391-402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720927

RESUMO

Background and purpose: Neurotransmitters are chemical messengers that enhance and balance signals between cells and target cells in the body. They are vital to the body's ability to function. Epinephrine is one of the most essential catecholamine neurotransmitters with an important biological and pharmacological role in the mammalian central nervous system. Therefore, it is very important to develop sensitive, simple, and fast methods for the determination of this compound. Experimental approach: In the present work, a glassy carbon electrode (GCE) modified with the cerium oxide-zinc oxide (CeO2-ZnO) nanocomposite (CeO2-ZnO/GCE) was developed for the sensitive and quick detection of epinephrine. The CeO2-ZnO nanocomposite was prepared by hydrothermal method. Electrochemical methods such as voltammetry and chronoamperometry techniques were used to investigate the performance of the developed sensor. Key results: The resulting CeO2-ZnO/GCE showed a remarkable response towards the determination of epinephrine. The electrochemical sensor demonstrated a wide dynamic linear range from 0.1 to 900.0 µM for analysis of epinephrine. The LOD equalled 0.03 µM for epinephrine. In addition, the electrochemical sensor had good feasibility for concurrent detection of epinephrine and theophylline. Furthermore, experimental outputs indicated that the oxidation peaks of epinephrine and theophylline were separated by a 685 mV difference between the two peaks in PBS at a pH of 7.0. Also, an electrochemical sensor has been employed to analyse epinephrine in real samples (urine and epinephrine Injection). Conclusion: The good and acceptable analytical performance of the developed sensor can provide a promising tool for the analysis of epinephrine in real samples.

19.
Mikrochim Acta ; 191(5): 294, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698253

RESUMO

Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.


Assuntos
Ampicilina , Técnicas Eletroquímicas , Fumonisinas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Titânio , Fumonisinas/análise , Ouro/química , Ampicilina/análise , Ampicilina/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Titânio/química , Técnicas Biossensoriais/métodos , Leite/química , Antibacterianos/análise , Eletrodos , Contaminação de Alimentos/análise , Animais
20.
Biosens Bioelectron ; 260: 116434, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38810414

RESUMO

Aptamer-based electrochemical sensors are frequently used as independent, surface-functionalized, passive electrodes. However, their sensitivity and detection limits become limited, particularly when the electrode area is reduced to facilitate miniaturization. A mobile phone-based microfluidic electrochemical aptamer sensing platform for 3,3',4,4'-tetrachlorobiphenyl (PCB77) detection was developed in this work. This aptamer sensor utilized Exonuclease I (Exo I) and DNA/AuNPs/horseradish peroxidase (DNA/AuNPs/HRP) nanoprobes as a merged signal amplification method, which resulted in an increase in the electrochemical sensing performance. Sensitive detection of PCB77 was accomplished by functionalizing the hierarchically structured Au@MoS2/CNTs/GO modified working/sensing electrode with the specific aptamer. The aptamer sensor was tested with different concentrations of PCB77 within the microfluidic platform. Afterward, the differential pulse voltammograms were recorded using a wireless integrated circuit device. Subsequently, the collected data was transmitted to a smartphone using Bluetooth communication. A detection limit of 0.0085 ng/L was obtained for PCB77 detection, with a detection range from 0.1 to 1000 ng/L. In addition, the detection of PCB77 in spiked water samples validated the possibility of using this aptamer sensor in a real environment, and the aptamer sensor demonstrated high selectivity in distinguishing PCB77 from other potential interfering species. The merging of electrochemical aptamer sensors with purposefully engineered microfluidic and integrated devices in this study is a novel and promising method that provides a dependable platform for on-site applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Bifenilos Policlorados , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Bifenilos Policlorados/análise , Ouro/química , Nanopartículas Metálicas/química , Exodesoxirribonucleases/química , Peroxidase do Rábano Silvestre/química , Nanotubos de Carbono/química , Molibdênio/química , Desenho de Equipamento , Poluentes Químicos da Água/análise , DNA/química , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA