RESUMO
Berberidis Radix (Sankezhen), a typical multi-origin Chinese medicinal material, originates from the dried roots of plants of the Berberis genus and is used to treat various ailments. These species have similar morphologies, potentially leading to misidentifications that can impact medicine efficacy. Therefore, developing suitable molecular markers to identify medicinal species is imperative. Furthermore, discrepancies exist in the taxonomy of the Berberis genus. In the present study, we de novo assembled the chloroplast genomes of six Berberis species (Berberis woomungensis C. Y. Wu, Berberis pruinosa Franch., Berberis thunbergii DC., Berberis chinensis Poir., Berberis wilsoniae Hemsl., and Berberis sp.) that commonly constitute Berberidis Radix and compared them with previously reported genomes. Our comparative analysis revealed similarities in genome structure, relative synonymous codon usage, amino acid frequency, repeats, and substitutions. Higher synonymous substitutions, indicative of predominant purifying selection on protein-coding genes, were observed compared to non-synonymous substitutions. However, positive selection was identified in six genes across 29 Berberis species-accD, matK, ndhD, rbcL, ycf1, and ycf2-highlighting their potential roles in adaptive responses to specific environmental conditions within the genus. Inverted repeats expansion and contraction affected the rate of mutations and were associated with the phylogenetic classification of Berberis. Our phylogenetic analysis supported the division of the Berberis complex into four genera, which corroborates previous studies involving extensive sampling. We identified the ndhD-ccsA region as the most polymorphic region and applied this region to Chinese patent medicines containing Berberidis Radix through metabarcoding. The metabarcoding analysis confirmed that five Berberis species commonly constitute Berberidis Radix in Chinese patent medicines. In conclusion, this study provides insight into the molecular evolution of the chloroplast genome and the phylogeny of the Berberis genus. In addition, metabarcoding provides insight into the species composition of Berberidis Radix in Chinese patent medicines.
Assuntos
Berberis , Código de Barras de DNA Taxonômico , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Berberis/genética , Código de Barras de DNA Taxonômico/métodos , Seleção GenéticaRESUMO
Information on the spatiotemporal variations in the composition and sources of organic aerosols (OA) is needed to identify regional influences and to establish effective control measures. Here, 23-h PM2.5 samples were collected in five central cities of the Yangtze River Delta in eastern China, including Nanjing, Suzhou, Wuxi, Changzhou, and Zhenjiang, every three days from 2020/09/01 to 2021/02/28. Each sample was analyzed for water-soluble inorganic ions, organic carbon (OC), elemental carbon (EC), and organic molecular markers (OMMs). Generally, the major components of PM2.5, including NH4+, SO42-, NO3-, OC, and EC, exhibited similar temporal patterns across the five cities. In all OMM groups, the concentrations of PAHs, oxygenated PAHs, and secondary products of isoprene showed strong correlations (r = 0.79±0.050 - 0.93±0.028) and low coefficient of divergence (COD = 0.22±0.024 - 0.30±0.033) between sampling sites, indicating a homogeneous spatial distribution of industrial emissions and biogenic secondary OA in autumn and winter. Other OMMs showed wider r (e.g., steranes and hopanes, 0.20 - 0.80) and COD (0.26 - 0.69) ranges for all site pairs, probably due to the influence of local emissions. Based on the source apportionment results using Positive matrix factorization, the biomass burning factor dominated the contribution to OC and EC in winter and showed strong correlations (r = 0.84±0.063) between the sampling sites, indicating regional transport of emissions from biomass burning and fossil fuel combustion in the heating season. Traffic-related factors had the greatest spatial heterogeneity (r = 0.27±0.19 - 0.51±0.16) and contributed significantly to OC at their maximum levels.
RESUMO
Poor ovarian response (POR) patients often face the risk of not having enough competent oocytes. Then, aspirating small follicles could serve as a strategy to increase their number. Many efforts have been addressed to associate follicular size with oocyte competence, but results are controversial. Therefore, our study aimed to evaluate oocyte maturation and developmental competence, along with a non-invasive oocyte-maturation-related miRNA signature in oocytes retrieved from both large and small follicles. A total of 178 follicles, from 31 POR patients, were aspirated and measured on the day of ovarian puncture. Follicular diameters, oocyte collection, oocyte maturation, fertilization, blastocysts, and good-quality blastocyst rates were recorded. Simultaneously, follicular fluids were collected to quantify their miRNA expression. The efficacy of oocyte retrieval along with oocyte maturation, fertilization, and blastulation rates tended to increase with follicular size, but few significant differences were found. Despite there being significantly more collected oocytes from follicles > 11.5 mm compared to follicles ≤ 11.5 mm (p < 0.05), oocytes from the latter were also mature, with no significant differences in the miRNA signature, but only those > 13.5 mm demonstrated developmental competence. In conclusion, 11.5 mm follicles can produce mature oocytes, but only those larger than 13.5 mm yielded transferable embryos.
Assuntos
Fertilização in vitro , MicroRNAs , Oócitos , Folículo Ovariano , Humanos , Oócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Folículo Ovariano/metabolismo , Adulto , Fertilização in vitro/métodos , Indução da Ovulação , Recuperação de Oócitos , Líquido Folicular/metabolismo , Blastocisto/metabolismo , GravidezRESUMO
Rind thickness (RT) is an important agronomic trait in watermelon [Citrullus lanatus (Thunb.) Mansf.] and affects watermelon storability. However, genetic studies on this trait, as well as gene regulation studies, are scarce and of limited production significance. We constructed a temporary F2 generation using the highly differentiated thick-rind watermelon 'XiaoXiGua-4' and the thin-rind watermelon 'DuanMan' as parents and localized the Cla97C02G044120 gene, which controls the thickness of watermelon rind, to the intervals of chromosome 2, CL2-32303995 and CL2-32316840, through 2 years of genetic analysis. No exonic mutations were found in this gene, but two promoter mutations resulted in changes in the promoter progenitor. Fluorescence quantitative PCR analysis revealed highly significant differences in expression at 1 d and 28 d, and the expression was significantly lower in thick-skinned watermelon varieties. Marker-assisted selection (MAS) for this trait was performed using the Caps marker CL2-32303995 and the InDel marker CL2-32316840, which not only verified the stability of the localization interval but also distinguished thick rind from thin rind. These results can be used for germplasm resource screening and have strong breeding significance.
Assuntos
Citrullus , Locos de Características Quantitativas , Citrullus/genética , Marcadores Genéticos , Fenótipo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genéticaRESUMO
BACKGROUND: The aim of this study was to elucidate the critical role of autophagy-related gene aggregation in gastric cancer tumor microenvironment cells and to investigate their major roles in cellular functions. In particular, the expression of these genes in tumor-associated fibroblast subtypes was scrutinized in an attempt to explain their cell-subpopulation-specific roles in cell-cell communication and regulation of cellular functions. METHODS: In this study, single-cell RNA sequencing data were first analyzed in multiple steps, including data preprocessing, cell clustering, and cell classification. Cell subpopulations and gene expression patterns were identified and analyzed using unsupervised non-negative matrix factorization (NMF) techniques. The dynamic expression of autophagy-related gene aggregates in various cell types was deciphered by pseudotime trajectory analysis (PTA). Intercellular communication analysis was performed using the CellChat R software package, revealing the intricate communication patterns and exchange of key signaling molecules between cell subpopulations, and SCENIC analysis was used to identify gene regulatory networks and reveal the mechanisms behind cellular heterogeneity. RESULT: Cell subpopulations associated with pan-apoptosis were identified by NMF decomposition and SCENIC analysis. Cell-cell communication analysis revealed intricate communication patterns and exchange of key signaling molecules between cell subpopulations. Dynamic expression of autophagy-related genes aggregated in the pseudotemporal trajectory of STAD was observed by PTA. In the fibroblast subtype, different ligand-receptor interactions and their key roles in immunomodulation were observed. CONCLUSION: By deeply analyzing and comparing gene expression patterns within cellular subpopulations and intercellular communication, this study provides new insights into the role of pan-apoptosis-related genes in regulating immune responses and cellular functions in gastric cancer. These findings pave the way for further exploration of the role of these genes in tumorigenesis and immune regulation, as well as laying the foundation for potential therapeutic strategies.
RESUMO
BACKGROUND: Prognostication has been used to identify patient populations that could potentially benefit from treatment de-escalation. In patients with hormone receptor-positive (HRpos), human epidermal growth factor receptor 2-negative (HER2neg) early breast cancer (eBC), treatment de-escalation classically involved omitting chemotherapy. With recently developed specialized therapies that require hands-on side-effect management, the therapeutic landscape is changing and therapy decisions are no longer based only on prognosis, but also consider potential side-effects. Therefore, identification of patient groups based on prognostication has gained importance. MATERIALS AND METHODS: In this retrospective analysis, a population of 2359 node-negative HRpos/HER2neg eBC patients was selected from all patients treated at the University Breast Center of Franconia, Germany between 2002 and 2021. The prognostic value of the IHC3 score (incorporating immunohistochemical measurements of the estrogen and progesterone receptor status and Ki-67) with clinical parameters (lymph node status, tumor stage, grading) regarding invasive disease-free survival (iDFS) and overall survival (OS) was assessed. RESULTS: IHC3 positively correlated with Ki-67 expression and inversely correlated with hormone receptor expression. IHC3 categorized into quartiles identified patients with a more unfavorable prognosis: 5-year and 10-year iDFS rates for patients in the highest versus the lowest quartile were 84% versus 95% and 70% versus 88%, respectively. A sensitivity analysis of distant disease-free survival showed similar results to those of iDFS. Five-year and 10-year OS rates for patients in the highest versus the lowest quartile were, respectively, 92% versus 97% and 81% versus 92%. CONCLUSIONS: IHC3 is able to define prognostic groups in patients with node-negative, HRpos/HER2neg eBC. Node-negative patients with a high IHC3 score had the worst prognosis, which was comparable to that of node-positive patients described in recent trials. This simple and cost-effective tool could thus potentially aid in identifying patient groups for innovative therapeutic approaches.
RESUMO
DNA fingerprinting can reveal the genetic diversity of Elaeagnus angustifolia germplasm resources and clarify the source and genetic background of E. angustifolia germplasm, which are the preconditions for the breeding of new varieties, the identification and protection of germplasm resources, and the comprehensive development of the E. angustifolia industry considering both ecological and economic benefits. We employed 11 pairs of primers with high polymorphism, clear bands, and high reproducibility to analyze the genetic diversity of 150 E. angustifolia germplasm accessions from Gansu and Beijing by the simple sequence repeat (SSR) molecular markers. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance and analyzed the genetic structure of the 150 germplasm accessions based on a Bayesian model in Structure v2.3.3. The genetic diversity analysis revealed the mean number of alleles (Na) of 7.636 4, the mean number of effective alleles (Ne) of 2.832 6, the mean Shannon genetic diversity index (I) of 1.178 1, the mean Nei's gene diversity index (H) of 0.582 1, the mean observed heterozygosity (Ho) of 0.489 9, the mean expected heterozygosity (He) of 0.584 0, the mean polymorphism information content (PIC) of 0.535 4, and the mean genetic similarity (GS) of 0.831 5. These results suggested that the E. angustifolia germplasm resources we studied exhibited significant genetic differences and rich genetic diversity. The cluster analysis revealed that the tested materials can be classified into 3 groups, with the main genetic distance (GD) of 0.422 9. The clustering results were not completely consistent with the geographic origin. The population structure analysis classified the germplasm accessions into 2 populations. We used 8 pairs of primers with high PIC to construct the fingerprints of 150 E. angustifolia germplasm accessions. The present study successfully constructs the DNA fingerprints and clarified the genetic relationship of the E. angustifolia germplasm resources in Gansu and Beijing, providing a theoretical basis for germplasm resource identification, breeding of elite varieties, application in gardening, and molecular-assisted breeding of E. angustifolia.
Assuntos
Impressões Digitais de DNA , Variação Genética , Repetições de Microssatélites , Repetições de Microssatélites/genética , Elaeagnaceae/genética , Elaeagnaceae/classificação , Marcadores Genéticos , DNA de Plantas/genética , Polimorfismo Genético , ChinaRESUMO
This study evaluates the composition and seasonal characteristics of fine particulate matter (PM2.5) during winter and summer through simultaneous measurements conducted at the Gwangju Institute of Science and Technology in South Korea and the Changping campus of Peking University in China. PM2.5 samples were concurrently collected at both sites, and chemical analyses were conducted to quantify various components, including carbonaceous materials, ionic species, and metals. Although the average PM2.5 concentrations were comparable between the two sites, there were distinct differences in the concentrations of major components. Organic indicator compounds were analyzed to discern the contributions of primary and secondary pollution sources. Changping displayed a mix of primary and secondary pollution, characterized by higher concentrations of primary organic carbon (POC) such as polycyclic aromatic hydrocarbons and hopanes, compared to Gwangju. In contrast, Gwangju demonstrated a higher prevalence of secondary organic carbon (SOC), particularly water-soluble organic carbon not related to biomass burning (WSOCnbb) and various polar organic compounds. The organic mass to organic carbon (OM/OC) ratios estimated using the mass balance method revealed significant differences, with Gwangju showing a higher ratio of 2.3 compared to 1.9 at Changping, indicating a greater influence of secondary pollutants at Gwangju. Additionally, both Changping and Gwangju exhibited higher OM/OC ratios in summer (Changping: 2.0, Gwangju: 2.5) compared to winter (Changping: 1.8, Gwangju: 2.2), indicating seasonal differences in organic mass contributions to PM2.5. These findings underscore the importance of accounting for spatial and seasonal variations in air pollution studies and suggest that updating commonly used OM/OC ratios could enhance the reliability of research outcomes.
Assuntos
Poluentes Atmosféricos , Carbono , Monitoramento Ambiental , Material Particulado , Estações do Ano , Material Particulado/análise , China , República da Coreia , Poluentes Atmosféricos/análise , Carbono/análise , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
BACKGROUND: The blunt snout bream (Megalobrama amblycephala) is an important economic freshwater fish in China with tender flesh and high nutritional value. With the cultivation of superior new varieties and the expansion of breeding scale, it becomes imperative to employ sex-control technology to cultivate monosexual populations of M. amblycephala, thereby preventing the deterioration of desirable traits. The development of specific markers capable of accurately identifying the sex of M. amblycephala would facilitate the determination of the genetic sex of the breeding population before gonad maturation, thereby expediting the processes of sex-controlled breeding of M. amblycephala. RESULTS: A whole-genome re-sequencing was performed for 116 females and 141 males M. amblycephala collected from nine populations. Seven candidate male-specific sequences were identified through comparative analysis of male and female genomes, which were further compared with the sequencing data of 257 individuals, and finally three male-specific sequences were generated. These three sequences were further validated by PCR amplification in 32 males and 32 females to confirm their potential as male-specific molecular markers for M. amblycephala. One of these markers showed potential applicability in M. pellegrini as well, enabling males to be identified using this specific molecular marker. CONCLUSIONS: The study provides a high-efficiency and cost-effective approach for the genetic sex identification in two species of Megalobrama. The developed markers in this study have great potential in facilitating sex-controlled breeding of M. amblycephala and M. pellegrini, while also contributing valuable insights into the underlying mechanisms of fish sex determination.
Assuntos
Cyprinidae , Animais , Feminino , Masculino , Cyprinidae/genética , Marcadores Genéticos , Sequenciamento Completo do Genoma/métodos , GenomaRESUMO
BACKGROUND: Endonucleases play a crucial role in plant growth and stress response by breaking down nuclear DNA. However, the specific members and biological functions of the endonuclease encoding genes in wheat remain to be determined. RESULTS: In this study, we identified a total of 26 TaENDO family genes at the wheat genome-wide level. These genes were located on chromosomes 2 A, 2B, 2D, 3 A, 3B, and 3D and classified into four groups, each sharing similar gene structures and conserved motifs. Furthermore, we identified diverse stress-response and growth-related cis-elements in the promoter of TaENDO genes, which were broadly expressed in different organs, and several TaENDO genes were significantly induced under drought and salt stresses. We further examined the biological function of TaENDO23 gene since it was rapidly induced under drought stress and exhibited high expression in spikes and grains. Subcellular localization analysis revealed that TaENDO23 was localized in the cytoplasm of wheat protoplasts. qRT-PCR results indicated that the expression of TaENDO23 increased under PEG6000 and abscisic acid treatments, but decreased under NaCl treatment. TaENDO23 mainly expressed in leaves and spikes. A kompetitive allele-specific PCR (KASP) marker was developed to identify single nucleotide polymorphisms in TaENDO23 gene in 256 wheat accessions. The alleles with TaENDO23-HapI haplotypes had higher grain weight and size compared to TaENDO23-HapII. The geographical and annual frequency distributions of the two TaENDO23 haplotypes revealed that the elite haplotype TaENDO23-HapI was positively selected in the wheat breeding process. CONCLUSION: We systematically analyzed the evolutionary relationships, gene structure characteristics, and expression patterns of TaENDO genes in wheat. The expression of TaENDO23, in particular, was induced under drought stress, mainly expressed in the leaves and grains. The KASP marker of TaENDO23 gene successfully distinguished between the wheat accessions, revealing TaENDO23-HapI as the elite haplotype associated with improved grain weight and size. These findings provide insights into the evolution and characteristics of TaENDO genes at the genome-wide level in wheat, laying the foundation for further biological analysis of TaENDO23 gene, especially in response to drought stress and grain development.
Assuntos
Secas , Estresse Fisiológico , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genoma de Planta , Filogenia , Cromossomos de Plantas/genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Citrus unshiu Marc. cv. Miyagawa-wase is one of the most widely cultivated citrus varieties on Jeju Island in Republic of Korea. Mutation breeding is a useful tool for inducing genetic diversity by causing genomic mutations in a short period of time. We previously conducted mutation breeding using gamma irradiation to develop new varieties of C. unshiu. Here, we describe one of these varieties, Yein-early, which has a redder peel, greater hardness, and higher sugar content compared with the wild type (WT). Yein-early leaves also showed a unique phenotype compared with the WT, characterized by longer longitudinal length, shorter transverse length, stronger curling, and longer petiole length. Genome resequencing of Yein-early and the WT uncovered significant single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). These variations were crucial in identifying molecular markers unique to Yein-early. In addition, we developed an allele-specific PCR marker specifically targeting a homozygous SNP in Yein-early that distinguishes it from the WT and other citrus varieties. This study contributes to the understanding of pigment synthesis in fruits and provides a valuable tool for selection of the novel Yein-early variety in citrus breeding programs.
RESUMO
Organic soil amendments (OSA) with long residence times, such as biochar, have a high potential for soil organic carbon (SOC) sequestration. The highly aromatic structure of biochar reduces microbial decomposition and explains the slow turnover of biochar, indicating long persistence in soils and thus potential SOC sequestration. However, there is a lack of data on biochar-induced SOC sequestration in the long-term and under field conditions. We sampled two long-term field experiments in Germany, where biochar was applied 12 and 14 years ago. Both locations differ in soil characteristics and in the types and amounts of biochar and other OSA. Amendments containing compost and 31.5 Mg ha-1 of biochar on a loamy soil led to a SOC stock increase of 38 Mg ha-1 after OSA addition. The additional increase is due to non-biochar co-amendments such as compost or biogas digestate. After eleven years, this SOC stock increase was still stable. High biochar amount additions of 40 Mg ha-1 combined with biogas digestate, compost or synthetic fertilizer on a sandy soil led to an increase of SOC stocks of 61 Mg ha-1; 38 Mg ha-1 dissipated in the following four years most likely due to lacking physical protection of the coarse soil material, and after nine years the biochar-amended soils showed only slightly higher SOC stocks (+7 Mg ha-1) than the control. Black carbon stocks on the same soil increased in the short- and mid-term and decreased almost to the original stock levels after nine years. Our results indicate that in most cases the long-term effect on SOC and black carbon stocks is controlled by biochar quality and amount, while non-biochar co-amendments can be neglected. This study proves that SOC sequestration through the use of biochar is possible, especially in loamy soils, while non-biochar OSA cannot sequester SOC in the long term.
RESUMO
Lineage plasticity in small cell lung carcinoma (SCLC) causes therapeutic difficulties. This study aimed to investigate the pathological findings of plasticity in SCLC, focusing on combined SCLC, and elucidate the involvement of YAP1 and other transcription factors. We analysed 100 surgically resected SCLCs through detailed morphological observations and immunohistochemistry for YAP1 and other transcription factors. Component-by-component next-generation sequencing (n = 15 pairs) and immunohistochemistry (n = 35 pairs) were performed on the combined SCLCs. Compared with pure SCLCs (n = 65), combined SCLCs (n = 35) showed a significantly larger size, higher expression of NEUROD1, and higher frequency of double-positive transcription factors (p = 0.0009, 0.04, and 0.019, respectively). Notably, 34% of the combined SCLCs showed morphological mosaic patterns with unclear boundaries between the SCLC and its partner. Combined SCLCs not only had unique histotypes as partners but also represented different lineage plasticity within the partner. NEUROD1-dominant combined SCLCs had a significantly higher proportion of adenocarcinomas as partners, whereas POU2F3-dominant combined SCLCs had a significantly higher proportion of squamous cell carcinomas as partners (p = 0.006 and p = 0.0006, respectively). YAP1 expression in SCLC components was found in 80% of combined SCLCs and 62% of pure SCLCs, often showing mosaic-like expression. Among the combined SCLCs with component-specific analysis, the identical TP53 mutation was found in 10 pairs, and the identical Rb1 abnormality was found in 2 pairs. On immunohistochemistry, the same abnormal p53 pattern was found in 34 pairs, and Rb1 loss was found in 24 pairs. In conclusion, combined SCLC shows a variety of pathological plasticity. Although combined SCLC is more plastic than pure SCLC, pure SCLC is also a phenotypically plastic tumour. The morphological mosaic pattern and YAP1 mosaic-like expression may represent ongoing lineage plasticity. This study also identified the relationship between transcription factors and partners in combined SCLC. Transcription factors may be involved in differentiating specific cell lineages beyond just 'neuroendocrine'.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Imuno-Histoquímica , Linhagem da Célula , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Mutação , Plasticidade Celular , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genéticaRESUMO
Background: Siganidae is a marine teleost family consisting of a single extant genus, Siganus Forsskål, 1775, which included 29 recognized species of rabbitfish. Aim: The main goal of this study was the use of the mitochondrial 16S rRNA gene as a potential molecular marker in the phylogenetic relationships study of some rabbitfishes species (Siganidae: Perciformes). Methods: The samples were gathered from the Red Sea. The sequences of four rabbitfishes (Siganus argenteus, Siganus luridus, Siganus rivulatus, and Siganus stellatus) were deposited into NCBI to gain the accession numbers (PP488874-PP488877) and then analyzed with their related rabbitfishes depending on available sequence data of the mitochondrial 16S rRNA gene. Results: The results of 16S rRNA sequences illustrated that the average A+T values were greater than C+G. Conclusion: The low genetic distance between S. luridus and Siganus rivulatus indicated a close linkage between them.
Assuntos
Filogenia , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Perciformes/genética , Perciformes/classificação , Marcadores Genéticos , Oceano ÍndicoRESUMO
With the global shift towards healthier eating habits, the focus of the rice industry has evolved from quantity to quality. In China, the Yangtze River Basin is the main area consuming long-grain and high-quality indica rice. Hubei Province, a significant rice-producing area, currently cultivates a limited range of rice varieties, risking degradation and diminishing economic returns. Therefore, it is imperative to cultivate elite rice varieties tailored to the local production conditions and can significantly enhance the added value. This study bred the novel rice cultivar "Runxiangyu", characterized by early maturity, high quality, and high yield. It is a hybrid of Ezhong 5, known for its moderate height and excellent quality, albeit with a long growth period and lack of fragrance, and Yuzhenxiang, renowned for its high quality, short growth period, and fragrance but limited by its tall stature and poor tillering ability. The breeding process utilized optimized anther culture coupled with molecular marker-assisted selection (MAS) and phenotype analysis. In the field, the developed cultivar was 120.9 cm tall and had an entire growth period of 117.5 days, demonstrating moderate disease resistance and excellent heat tolerance. Its grains are fragrant, meeting the national standard of grade two high-quality rice set by the Food Quality Supervision and Inspection Center of the Ministry of Agriculture and Rural Areas). Exhibiting superior agronomic traits, such as plant type, height, growth period, and stress resistance, along with and quality attributes, including grain shape, chalkiness, fragrance, and taste, "Runxiangyu" was certified by the Agricultural Crop Variety Certification Commission of Hubei in 2022. These findings suggested that molecular MAS coupled with optimized anther culture and multi-site phenotype analysis is an efficient and rapid method for crop breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01495-4.
RESUMO
Cytoplasmic male sterility (CMS) is important for commercial hybrid seed production. However, it is still not used in eggplant (Solanum melongena L.), and corresponding regulatory genes and mechanisms of action have not been reported. We report CMS line 327A, which was derived from the hybridization between cultivated and wild eggplants. By looking at different stages of anther development under a microscope, we saw that the 327A anther's tapetum layer vacuolized during meiosis, which caused abortion. To investigate the 327A CMS regulatory genes, the mitochondrial genomes of 327A and its maintainer line 327B were assembled de novo. It was found that 15 unique ORFs (Open Reading Frame) were identified in 327A. RT-PCR and RT-QPCAR tests confirmed that orf312a and orf172a, 327A-specific ORFs with a transmembrane domain, were strongly expressed in sterile anthers of 327A. In addition, orf312a has a chimeric structure with the ribosomal protein subunit rpl16. Therefore, orf312a and orf172a can be considered strong candidate genes for CMS. Concurrently, we analyzed the characteristics of CMS to develop a functional molecular marker, CMS312, targeting a future theoretical basis for eggplant CMS three-line molecular breeding.
Assuntos
Genoma Mitocondrial , Infertilidade das Plantas , Solanum melongena , Solanum melongena/genética , Infertilidade das Plantas/genética , Fases de Leitura Aberta/genética , Regulação da Expressão Gênica de Plantas , Citoplasma/genética , Citoplasma/metabolismo , Genes de PlantasRESUMO
Neuroendocrine neoplasms (NENs) represent a diagnostic and therapeutic challenge, due to their heterogeneity and limited treatment options. Conventional imaging techniques and therapeutic strategies may become unreliable during follow-up, due to the tendency of these neoplasms to dedifferentiate over time. Therefore, novel diagnostic and therapeutic options are required for the management of NEN patients. Delta-like ligand 3 (DLL3), an inhibitory ligand of Notch receptor, has emerged as a potential target for novel diagnostic and therapeutic strategies in NENs, since overexpression of DLL3 has been associated with tumor progression, poor prognosis and dedifferentiation in several NENs. This narrative review examines the current evidence about DLL3, its structure, function and association with tumorigenesis in NENs. Ongoing studies exploring the role of DLL3 as an emerging diagnostic marker are reviewed. Promising therapeutic options, such as antibody-conjugated drugs, CAR-T cells and radioimmunoconjugates, are also discussed.
RESUMO
This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.
RESUMO
Pear (Pyrus spp.) is a major fruit crop in the Rosaceae family, and extensive efforts have been undertaken to develop elite varieties. With advances in genome sequencing technologies, single-nucleotide polymorphisms (SNPs) are commonly used as DNA markers in crop species. In this study, a large-scale discovery of SNPs was conducted using genotyping by sequencing in a collection of 48 cultivated pear accessions. A total of 256,538 confident SNPs were found on 17 chromosomes, and 288 SNPs were filtered based on polymorphic information content, heterozygosity rate, and genome distribution. This subset of SNPs was used to genotype an additional 144 accessions, consisting of P. pyrifolia (53), P. ussuriensis (27), P. bretschneideri (19), P. communis (26), interspecific hybrids (14), and others (5). The 232 SNPs with reliable polymorphisms revealed genetic variations between and within species in the 192 pear accessions. The Asian species (P. pyrifolia, P. ussuriensis, and P. bretschneideri) and interspecific hybrids were genetically differentiated from the European species (P. communis). Furthermore, the P. pyrifolia population showed higher genetic diversity relative to the other populations. The 232 SNPs and four subsets (192, 96, 48, and 24 SNPs) were assessed for variety identification. The 192 SNP subset identified 173 (90.1%) of 192 accessions, which was comparable to 175 (91.1%) from the 232 SNPs. The other three subsets showed 81.8% (24 SNPs) to 87.5% (96 SNPs) identification rates. The resulting SNPs will be a useful resource to investigate genetic variations and develop an efficient DNA barcoding system for variety identification in cultivated pears.
RESUMO
Insoluble phosphorous compounds solubilization by soil bacteria is of great relevance since it puts available the phosphorus to be used by plants. The production of organic acids is the main microbiological mechanism by which insoluble inorganic phosphorus compounds are solubilized. In Gram negative bacteria, gluconic acid is synthesized by the activity of the holoenzyme glucose dehydrogenase-pyrroloquinoline quinine named GDH-PQQ. The use of marker genes is a very useful tool to evaluate the persistence of the introduced bacteria and allow to follow-up the effect of biotic and abiotic factors on these beneficial microorganisms in the soil. In previous studies we detected the presence of the pqqE gene in a great percentage of both non-culturable and culturable native soil bacteria. The objective of this study was to analyze the phylogeny of the sequence of pqqE gene and its potential for the study of phosphate solubilizing bacteria from pure and mixed bacterial cultures and rhizospheric soil samples. For this, the presence of the pqqE gene in the genome of phosphate solubilizing bacteria that belong to several bacteria was determined by PCR. Also, this gene was analyzed from mixed bacterial cultures and rhizospheric soil associated to peanut plants inoculated or not with phosphate solubilizing bacteria. For this, degenerate primers designed from several bacterial genera and specific primers for the genus Pseudomonas spp., designed in this study, were used. DNA template used from simple or mixed bacterial cultures and from rhizospheric soil samples was obtained using two different DNA extraction techniques. Results indicated that pqqE gene amplification product was found in the genome of all Gram negative phosphate solubilizing bacteria analyzed. It was possible to detect this gene in the DNA obtained from mixed cultures where these bacteria grew in interaction with other microorganisms and in that obtained from rhizospheric soil samples inoculated or not with these bacteria. The phylogenetic analysis indicated that pqqE gene is a conserved gene within related genera. In conclusion, pqqE gene could be a potential marker for the study of phosphate solubilizing bacterial populations.