RESUMO
Uneven lithium deposition poses a primary challenge for lithium-ion batteries, as it often triggers the growth of lithium dendrites, thereby significantly compromising battery performance and potentially giving rise to safety concerns. Therefore, the high level of safety must be guaranteed to achieve the large-scale application of battery energy storage systems. Here, we present a novel separator design achieved by incorporating a two-dimensional A-type molecular sieve coating onto the polypropylene separator surface, which functions as an effective lithium ion redistribution layer. The results demonstrated that even after undergoing 1000 cycles, the cell equipped with a two-dimensional A-type molecular sieve-Polypropylene (2D-A-PP) separator still maintains an impressive capacity retention rate of 70 %. In contrast, cells equipped with Polypropylene (PP) separators exhibit capacity retention rates below 50 % after only 500 cycles. Additionally, the incorporation of a two-dimensional molecular sieve enhances the mechanical properties of the PP separator, thereby bolstering battery safety. This study proposes a novel concept for the design of lithium-ion battery separator materials, offering a fresh perspective on the development of separators with exceptional thermal stability, enhanced porosity, superior electrolyte affinity, and effective inhibition of lithium dendrite formation.
RESUMO
Glycolysis of poly(ethylene terephthalate) (PET) is a prospective way for degradation of PET to its monomer bis(hydroxyethyl) terephthalate (BHET), providing the possibility for a permanent loop recycling. However, most reported glycolysis catalysts are homogeneous, making the catalyst difficult to recover and contaminating the products. Herein, we reported on the Pd-Cu/γ-Al2O3 catalyst and applied it in the glycolysis of PET as catalyst. The formed structure gave Pd-Cu/γ-Al2O3 a high active surface area, which enabled these micro-particles to work more efficiently. The PET conversion and BHET yield reached 99% and 86%, respectively, in the presence of 5 wt% of Pd-Cu/γ-Al2O3 catalyst within 80 min at 160 °C. After the reaction, the catalyst can be quickly separated by filtration, so it can be easily reused without significant loss of reactivity at least five times. Therefore, the Pd-Cu/γ-Al2O3 catalyst may contribute to an economically and environmentally improved large-scale recycling of PET fiber waste.
RESUMO
A new type of particle material modified zeolite molecular sieve (CTS/ZMS) is developed for the simultaneous removal of NH4+-N and NO3--N in groundwater. To ascertain the optimal performance of CTS/ZMS, a custom central composite design (CCD) was utilised to assess the operational parameters (dosage and contact time) of CTS/ZMS composites. Batch experiments were carried out to determine the removal efficiency and adsorption capacity across varying pH values (3-12) and temperatures (5 °C to 30 °C). The results of response surface three-dimensional analysis showed the removal efficiencies of nitrate and ammonium ions are the highest at a dosage of 5.5â g/L of CTS/ZMS adsorbents and adsorption time of 6.25â h and are respectively observed to be 40%, and 80.2%. Adsorption thermodynamic analysis (ΔG0<0, ΔH0>0, ΔS0>0) revealed ammonia and nitrate adsorption on CTS/ZMS composites are spontaneous and feasible at high temperatures. SEM, EDS, BET, FTIR and XPS were employed for analyzing the adsorption mechanism of CTS/ZMS for NH4+-N and NO3--N and included mostly ion exchange, electrostatic interaction, and hydrogen bonding. Different regeneration methods including water regeneration, thermal regeneration, and chemical regeneration for CTS/ZMS composites were analyzed to evaluate the removal efficiency of NH4+-N and NO3--N. The saturated CTS/ZMS composites regenerated by first 1â mol/L NaCl solution, followed by 1â mol/L Na2CO3 solution demonstrated the highest ammonia and nitrate removal efficiency. The experimental data indicated pseudo-second-order kinetic model and the Freundlich model explained well the ammonia and nitrate adsorption process of regenerated CTS/ZMS composites. According to the Langmuir model, the regenerated CTS/ZMS can adsorb a maximum of 0.92â mg/g of ammonia and 1.98â mg/g of nitrate. The results demonstrate that CTS/ZMS composites serve as a potentially efficient adsorbent for removing ammonia and ions from groundwater. This study offers technical guidelines and support for the future production and application of CTS/ZMS.
RESUMO
The nitrogen stable isotope composition (δ15N) of plant materials has numerous applications. Plant materials like bark can have a very high C:N ratio. Incomplete C combustion in such samples interferes with the δ15N measurement due to CO production. We modified the standard setup for δ15N measurement using an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (IRMS) by incorporating a 5A molecular sieve column, which better separates N2 from CO. We compared this new modified setup and the standard one for the measurement of bark samples. Precision and accuracy for δ15N in standards with low C:N ratio were equivalent for the two methods. However, for bark the results obtained with the new method had better precision and accuracy than the standard method. Replicates are nevertheless recommended with the new method to ensure confidence in the results.â¢During elemental analysis, incomplete combustion of material with high C:N ratio can lead to CO formation, which interferes with δ15N IRMS measurements.â¢Here we use a 5A molsieve column to remove the CO interference in δ15N measurements Precision and accuracy on δ15N measurements of samples with high C content are significantly improved.
RESUMO
Asymmetric carbon molecular sieve (CMS) hollow fiber membranes with tunable micro- and macro-structural morphologies for energy efficient propylene-propane separation are reported here. A sub-glass transition temperature (sub-Tg) thermal oxidative crosslinking strategy enables simultaneous optimization of the intrinsic molecular sieving properties while also reducing the thickness of the CMS "skin" derived from the 6FDA:BPDA/DAM polyimide precursors. Such synergistic tuning of CMS microstructure and macroscopic morphology of CMS hollow fibers enables significantly increased propylene permeance (reaching 186.5 GPU) while maintaining an appealing propylene/propane selectivity of 13.3 for 50/50 propylene/propane mixed gas feeds. Our findings reveal a more refined and versatile tool than available with previous O2-doping pretreatments. The advanced approach here should be broadly useful to other polyimide precursors and diverse gas pairs.
RESUMO
Redox-active metal-organic frameworks (MOFs) are very promising materials due to their potential capabilities for postsynthetic modification aimed at tailoring their application properties. However, the research field related to redox-active MOFs is still relatively underdeveloped, which limits their practical application. We investigated the self-assembly process of Cr(II) ions and isophthalate (m-bdc) linkers, which have been previously demonstrated to yield 0D metal-organic polyhedra. However, using the diffusion-controlled synthetic approach, we demonstrate the selective preparation of a 2D-layered Cr(II)-based MOF material [Cr(m-bdc)]·H2O (1·H2O). Remarkably, the controlled oxidation of the developed 2D MOF using nitric oxide or dry oxygen resulted in modified porous materials with excellent H2/N2 adsorption selectivities.
RESUMO
Carbon molecular sieve (CMS) membranes have emerged as attractive gas membranes due to their tunable pore structure and consequently high gas separation performances. In particular, polyimides (PIs) have been considered as promising CMS precursors because of their tunable structure, superior gas separation performance, and excellent thermal and mechanical strength. In the present work, polyphosphoric acid (PPA) was employed as both cross-linker and porogen, it created pores within the PI polymeric matrix, while it also effectively acting as a cross-linker to regulate the ultramicropores of the CMS membranes, thus simultaneously improving both permeability and selectivity of the CMS membranes. By employing PI/PPA hybrid with PPA content of 5 wt % as a precursor, the obtained CMS membrane exhibited a CO2 and He permeability of 1378.3 Barrer and 1431.4 Barrer, respectively, which was an approximately 10-fold increase compared to the precursor membrane. Under optimized conditions, the CO2/CH4 and He/CH4 selectivity of the obtained CMS membrane reached 81.5 and 89.9, respectively, which was 278% and 307% higher than that of the pristine PI membrane. In addition, the membrane exhibited good long-term stability during a one-week continuous test. This study clearly denoted PPA can be used for precisely tailoring the ultramicroporosity of CMS membranes.
RESUMO
Global warming, driven by greenhouse gases like CH4 and CO2, necessitates efficient catalytic conversion to syngas. Herein, Ni containing different molecular sieve nanomaterials are investigated for dry reforming of methane (DRM). The reduced catalysts are characterized by surface area porosity, X-ray diffraction, Raman infrared spectroscopy, CO2 temperature-programmed desorption techniques, and transmission electron microscopy. The active sites over each molecular sieve remain stable under oxidizing gas CO2 during DRM. The reduced 5Ni/CBV10A catalyst, characterized by the lowest silica-alumina ratio, smallest surface area and pore volume, and narrow 8-ring connecting channels, generated the maximum number of active sites on its outer surface. In contrast, the reduced-5Ni/CBV3024E catalyst, with the highest silica-alumina ratio, more than double the surface area and pore volume, 12-ring sinusoidal porous channels, and smallest Ni crystallite, produced the highest H2 output (44%) after 300 min of operation at 700 °C, with a CH4:CO2 = 1:1, P = 1 atom, gas hour space velocity (GHSV) = 42 L gcat-1 h-1. This performance was achieved despite having 25% fewer initial active sites, suggesting that a larger fraction of these sites is stabilized within the pore channels, leading to sustained catalytic activity. Using central composite design and response surface methodology, we successfully optimized the process conditions for the 5Ni/CBV3024E catalyst. The optimized conditions yielded a desirable H2 to CO ratio of 1.00, with a H2 yield of 91.92% and a CO yield of 89.16%, indicating high efficiency in gas production. The experimental results closely aligned with the predicted values, demonstrating the effectiveness of the optimization approach.
RESUMO
Complexing agents (CAs) can be used for the removal of Cr(VI) via nanoscale Fe0 (nZVI) reduction in cost-effective manner. However, nZVI is prone to aggregation and passivation, and some conventional CAs are toxic and difficult to biodegrade, potentially causing secondary pollution. Therefore, selecting an environmentally friendly CA for assisting in the removal of Cr(VI) via supported nZVI is imperative. Herein, NaA molecular sieve membrane-supported nZVI (nZVI/NaA-NF) was prepared via the secondary growth and liquid-phase reduction method using nickel foam (NF) as the carrier. The physicochemical characteristics of nZVI/NaA-NF before and after reaction were analysed via SEM, EDS, and XPS. A CA-improved nZVI/NaA-NF was used for the effective removal of Cr(VI) in a continuous fixed-bed system. Furthermore, the influences of various experimental factors including the CA type, CA concentration, solution pH, space velocity, and inlet Cr(VI) concentration on Cr(VI) removal were systematically investigated. The results demonstrated that nZVI particles were homogeneously immobilized on the NaA molecular sieve membrane/NF for fresh nZVI/NaA-NF, and tetrasodium iminidisuccinate (IDS-4Na) inhibited the aggregation of Cr(III)/Fe(III) (hydr)oxide precipitates during the reaction. IDS-4Na demonstrated excellent promotive effect on Cr(VI) removal via nZVI/NaA-NF. The breakthrough time for Cr(VI) in the addition of IDS-4Na was considerably longer than that of nZVI/NaA-NF alone. The breakthrough concentration of Cr(VI) only reached 1.1% and 9.9% of the inlet concentration at 220 and 240 min, with an IDS-4Na concentration of 4 mM, a pH of 2.5, and a space velocity of 0.265 min-1. The Bohart-Adams model was appropriate to predict the initial part of Cr(VI) breakthrough curves in the nZVI/NaA-NF fixed bed. The saturated concentration (N0) increased with an increase in inlet Cr(VI) concentration. The Yoon-Nelson model afforded good fitting results for all breakthrough curves of Cr(VI). The k' value increased with an increase in space velocity, and the τ value decreased.
Assuntos
Cromo , Ferro , Níquel , Cromo/química , Níquel/química , Ferro/química , Poluentes Químicos da Água/química , Adsorção , Membranas Artificiais , Nanopartículas Metálicas/químicaRESUMO
Hydrofluoric acid (HF)-induced electrode and interfacial structure degeneration poses a significant challenge for high-voltage lithium metal batteries (LMBs). To address this issue, we propose a separator strategy that involves decorating a regular polyethylene (PE) separator with molecular sieves (TW) impregnated with piperidine (PI). The porous structure of the TW serves as a reaction chamber for PI and HF. As a result, the HF content in the controlled electrolyte with 500â ppm H2O (ELE-500) is notably reduced when using TW@PI-PE separators, thereby shielding nickel-rich cathodes from HF etching. Simultaneously, due to the hydrolysis of Li salts, and the inertness of PI towards H2O, a uniform lithium fluoride (LiF)-rich solid electrolyte interphase can form on the Li metal anode, further mitigating dendrite formation. The lifespan of the symmetric Li cell using the TW@PI-PE separator is doubled in ELE-500, exhibiting stable 500-hour cycles at 3â mA cm-2 and 3â mAh cm-2. Additionally, with the effective limitation of transition metal (TM) dissolution, the 4.6-V LMBs employing a LiNi0.8Co0.1Mn0.1O2 cathode maintain an 81 % capacity retention over 100â cycles, even in ELE-1000. The innovative TW@PI system presented here offers a fresh perspective for future research aimed at eliminating HF in LMBs.
RESUMO
This study focuses on the efficient removal of Ni(II) from spent lithium-ion batteries (LIBs) to support environmental conservation and sustainable resource management. A composite material, known as molecular sieve (MS)-based metal-organic framework (MOF) composites (MMCs), consisting of a synthesized MS matrix with integrated MOFs, was developed for the adsorption of Ni(II). The structural and performance characteristics of the MMCs were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms (BET). Batch adsorption experiments were conducted to assess the Ni(II) adsorption performance of the MMCs. The results revealed that, under conditions of pH 8 and a temperature of 298 K, the MMCs achieved near-equilibrium Ni(II) adsorption within 6 h, with a maximum theoretical adsorption capacity of 204.1 mg/g. Further analysis of the adsorption data confirmed that the adsorption process followed a pseudo-second-order kinetic model and Langmuir isotherm model, indicating a spontaneous, endothermic chemical adsorption mechanism. Importantly, the MMCs exhibited superior Ni(II) adsorption compared to the MS. This study provides valuable insights into the effective recovery and recycling of Ni(II) from spent LIBs, emphasizing its significance for environmental sustainability and resource circularity.
RESUMO
Co-based catalysts have shown great promise for propane dehydrogenation (PDH) reactions due to their merits of environmental friendliness and low cost. In this study, ordered mesoporous molecular sieve-supported CoOx species (CoOx/Al-SBA-15 catalyst) were prepared by one-step organometallic complexation. The catalysts show worm-like morphology with regular straight-through mesoporous pores and high external specific surface area. These typical features can substantially enhance the dispersion of CoOx species and mass transfer of reactants and products. Compared with the conventional impregnation method, the 10CSOC (10 wt.% Co/Al-SBA-15 prepared by the organometallic complexation method) sample presents a smaller CoOx size and higher Co2+/Co3+ ratio. When applied to PDH reaction, the 10CSOC delivers higher propane conversion and propylene selectivity. Under the optimal conditions (625 °C and 4500 h-1), 10CSOC achieves high propane conversion (43%) and propylene selectivity (83%). This is attributed to the smaller and better dispersion of CoOx nanoparticles, more suitable acid properties, and higher content of Co2+ species. This work paves the way for the rational design of high-performance catalysts for industrially important reactions.
RESUMO
The side reactions and dendrite growth at the interface of Zn anodes greatly limit their practical applications in Zn metal batteries. Herein, we propose a hybrid molecular sieve-based interfacial layer (denoted as Z7M3) with a hierarchical porous structure for Zn metal anodes, which contains 70 vol % microporous ZSM-5 molecular sieves and 30 vol % mesoporous MCM-41 molecular sieves. Through comprehensive molecular dynamics simulations, we demonstrate that the mesopores (â¼2.5 nm) of MCM-41 can limit the disordered diffusion of free water molecules and increase the wettability of the interfacial layer toward aqueous electrolytes. In addition, the micropores (â¼0.56 nm) of ZSM-5 can optimize the Zn2+ solvation structures by reducing the bonded water molecules, which simultaneously decrease the constraint force of solvated water molecules to Zn2+ ions, thus promoting the penetrability and diffusion kinetics of Zn2+ ions in Z7M3. The synergetic effects from the hybrid molecular sieves maintain a constant Zn2+ concentration on the surface of the Zn electrode during Zn deposition, contributing to dendrite-free Zn anodes. Consequently, Z7M3-coated Zn electrodes achieved excellent cycling stability in both half and full cells.
RESUMO
Aqueous zinc batteries (AZBs) with the advantages of safety, low cost, and sustainability are promising candidates for large-scale energy storage devices. However, the issues of interface side reactions and dendrite growth at the zinc metal anode (ZMA) significantly harm the cycling lifespan of AZBs. In this study, we designed a nano-molecular sieve additive, fullerenol (C60(OH)n), which possesses a surface rich in hydroxyl groups that can be uniformly dispersed in the aqueous solution, and captures free water in the electrolyte, thereby suppressing the occurrence of interfacial corrosion. Besides, fullerenol can be further reduced to fullerene (C60) on the surface of ZMA, holding a unique self-smoothing effect that can inhibit the growth of dendritic Zn. With the synergistic action of these two effects, the fullerenol-contained electrolyte (FE) enables dendrite-free ZMAs. The Zn-Ti half-cell using FE exhibits stable cycling over 2500 times at 5 mA cm-2 with an average Coulombic efficiency as high as 99.8 %. Additionally, the Zn-NaV3O8 cell using this electrolyte displays a capacity retention rate of 100 % after 1000 cycles at -20 °C. This work provides important insights into the molecular design of multifunctional electrolyte additives.
RESUMO
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
RESUMO
In situ monitoring of intracellular microRNAs (miRNAs) often encounters the challenges of surrounding complexity, coexistence of precursor miRNAs (pre-miRNAs) and the degradation of biological enzyme in living cells. Here, we designed a novel probe encapsulated DNA tetrahedral molecular sieve (DTMS) to realize the size-selective detection of intracellular miRNA 21 that can avoid the interference of pre-miRNAs. In such strategy, quencher (BHQ-1) labeled probe DNA (S6-BHQ 1) was introduced into the inner cavity of fluorophore (FAM) labeled DNA tetrahedral scaffolds (DTS) to prepare DTMS, making the FAM and BHQ-1 closely proximate, and resulting the sensor in a "signal-off" state. In the presence of miRNA 21, strand displacement reaction happened to form more stable DNA double-stranded structure, accompanied by the release of S6-BHQ 1 from the inner cavity of DTMS, making the sensor in a "signal-on" state. The DTMS based sensing platform can then realized the size-selective detection of miRNA 21 with a detection limit of 3.6 pM. Relying on the mechanical rigidity of DTS and the encapsulation of DNA probe using DTMS, such proposed method achieved preferable reproducibility and storage stability. Moreover, this sensing system exhibited good performance for monitoring the change of intracellular miRNA 21 level during the treatment with miRNA-related drugs, demonstrating great potential for biological studies and accurate disease diagnosis.
Assuntos
DNA , Corantes Fluorescentes , MicroRNAs , MicroRNAs/análise , Humanos , DNA/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Sondas de DNA/química , Sondas de DNA/genética , Fluorescência , Técnicas Biossensoriais/métodos , Tamanho da PartículaRESUMO
The development of granular carbon materials with outstanding selectivity for the separation of alkenes and alkanes is highly desirable in the petrochemical industry but remains a significant challenge due to closely similar molecular sizes and physical properties of adsorbates. Herein, we report a facile approach of using natural biomass to prepare novel granular carbon molecule sieves with a molecular recognition accuracy of 0.44 Å and propose a new three-region model for the pore size distribution of amorphous porous carbons. Coffee bean-based granule carbon molecular sieves (CFGCs) were prepared with precise micropore regulation with subangstrom accuracy and characterized using molecular probes to reveal the evolution of carbon structure during preparation. The CFGC-0.09-750 demonstrates exceptional selectivity adsorption toward C3H6 while excluding C3H8, with an uptake ratio of 106.75 and a C3H6 uptake of 1.88 mmol/g at 298 K and 100 kPa, showcasing its immense potential in industrial applications for separating C3H6 and C3H8. The novel three-region model established in this work can clearly and reasonably elucidate why the samples CFGCs can screen propylene from propane at the subangstrom level. This study provides important guidance for the development of new carbon molecular sieves with subangstrom accuracy in molecular recognition and separation capacity.
RESUMO
A hydrothermal synthesis method was developed to produce high crystallinity ZSM-5 zeolite using coal gasification coarse slag (CGCS) as the raw material. Instead of the expensive NaOH(s.), Na2SiO3(s.) was utilized to activate, depolymerize, and recombine Si and Al elements in the CGCS. The mother liquor circulation technology was employed to recover and reuse raw materials and residual reagents (Na2SiO3(aq.) and TPABr), reducing waste emissions and enhancing resource utilization efficiency. The synthesized ZSM-5 had a specific surface area of 455.675 m2 g-1, pore volume of 0.284 cm3 g-1, and pore diameter of 2.496 nm. The influence of various factors on the morphology and crystallinity of ZSM-5 was investigated, resulting in the production of ZSM-5 with higher specific surface area and pore volume. Adsorption experiments showed that WU-ZSM-5 exhibited a removal efficiency of 85% for ammonia nitrogen (NH4+-N(aq.)), validating its effectiveness in coal chemical wastewater purification. The mother liquor recycling technology enabled zero-emission utilization of solid waste resources and improved the utilization rate of alkali and template to 90%. These results demonstrate the potential application of the developed method in the efficient treatment of coal chemical wastewater.
Assuntos
Carvão Mineral , Águas Residuárias , Zeolitas , Zeolitas/química , Águas Residuárias/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodosRESUMO
Selective separation of ethylene and ethane (C2H4/C2H6) is a formidable challenge due to their close molecular size and boiling point. Compared to industry-used cryogenic distillation, adsorption separation would offer a more energy-efficient solution when an efficient adsorbent is available. Herein, a class of C2H4/C2H6 separation adsorbents, doped carbon molecular sieves (d-CMSs) is reported which are prepared from the polymerization and subsequent carbonization of resorcinol, m-phenylenediamine, and formaldehyde in ethanol solution. The study demonstrated that the polymer precursor themselves can be a versatile platform for modifying the pore structure and surface functional groups of their derived d-CMSs. The high proportion of pores centered at 3.5 Å in d-CMSs contributes significantly to achieving a superior kinetic selectivity of 205 for C2H4/C2H6 separation. The generated pyrrolic-N and pyridinic-N functional sites in d-CMSs contribute to a remarkable elevation of Henry selectivity to 135 due to the enhancement of the surface polarity in d-CMSs. By balancing the synergistic effects of kinetics and thermodynamics, d-CMSs achieve efficient separation of C2H4/C2H6. Polymer-grade C2H4 of 99.71% purity can be achieved with 75% recovery using the devised d-CMSs as reflected in a two-bed vacuum swing adsorption simulation.
RESUMO
Size selectivity is crucial in highly accurate preparation of biosensors. Herein, we described an innovative electrochemiluminescence (ECL) sensing platform based on the confined DNA tetrahedral molecular sieve (DTMS) for size-selective recognition of nucleic acids and small biological molecule. Firstly, DNA template (T) was encapsulated into the inner cavity of DNA tetrahedral scaffold (DTS) and hybridized with quencher (Fc) labeled probe DNA to prepare DTMS, accordingly inducing Ru(bpy)32+ and Fc closely proximate, resulting the sensor in a "signal-off" state. Afterwards, target molecules entered the cavity of DTMS to realize the size-selective molecular recognition while prohibiting large molecules outside of the DTMS, resulting the sensor in a "signal-on" state due to the release of Fc. The rigid framework structure of DTS and the anchor of DNA probe inside the DTS effectively avoided the nuclease degradation of DNA probe, and nonspecific protein adsorption, making the sensor possess potential application prospect for size-selective molecular recognition in diagnostic analysis with high accuracy and specificity.