Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
1.
Talanta ; 281: 126859, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39270606

RESUMO

Controlling the position, size, and shape of pores is a limitation of traditional monolithic preparation methods. The application of 3D printing technology offers high customizability, allowing the precise printing of pore positions, sizes, and shapes according to the designer's 3D model. Herein, by using Projection Microstereolithography (PµSL), we prepared a 3D-printed monolithic array with post-modification of thiol-functionalized metal-organic framework (MOF), and combined it with inductively coupled plasma mass spectrometry (ICP-MS) for the online analysis of trace Cd and Pb in human urine. To achieve array monolithic microextraction, six 3D-printed monolithic columns were modified with thiol-functionalized MOF-808 (MOF-808-SH), and were then assembled in the 3D printed extraction device incorporating gas valve and scaffold. The MOF-808-SH modified 3D-printed monolithic column exhibits excellent extraction performance to Cd2+ and Pb2+ due to rich active adsorption sites and hierarchical porous structure, and has long life span (>100 reused times). Under the optimized conditions, the limits of detection (LODs) are 3.5 and 17.6 ng L-1 for Cd2+ and Pb2+, respectively, with the relative standard deviations of 4.9 % and 8.2 % (0.1 µg L-1, n = 7), and the sample throughput is 11 h-1. To validate the accuracy of the method, the method was used to determine Cd and Pb in Certified Reference Materials of freeze-dried human urine, the determined results agree well with the certified values. This method was also successfully applied to the determination of trace Cd and Pb in real human urine samples. The developed method offers low LODs, robust anti-interference capability, high sample throughput, long reuse cycles, and automation analysis, showing great potential for the analysis of trace heavy metals in biological samples.


Assuntos
Cádmio , Chumbo , Estruturas Metalorgânicas , Impressão Tridimensional , Compostos de Sulfidrila , Humanos , Estruturas Metalorgânicas/química , Chumbo/urina , Cádmio/urina , Compostos de Sulfidrila/química , Compostos de Sulfidrila/urina , Microextração em Fase Sólida/métodos , Limite de Detecção
2.
Talanta ; 281: 126812, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39243440

RESUMO

Because of rapid industrialization and agriculturalization, solving the pressing problems of environment pollution, especially water and food quality, requires innovative solutions. In this paper, a novel and versatile metal-organic framework (ZIF-8)-hybrid monolithic column (ZIF-HMC) was prepared for in-tube solid-phase microextraction (IT-SPME) of organic nitrogen pesticides (ONPs). The prepared monolithic columns had superior adsorption sites, high porosity, excellent permeability, and ideal specific surface area based on Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Thermal Field Emission Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), X-ray Photoelectron Spectroscopy (XPS), and N2 adsorption-desorption. The ZIF-HMC contained a large number of nitrogen and oxygen atoms, benzene rings and ZIF-8, which could synergistically promote the adsorption efficiency of ONPs through multiple interactions, such as hydrogen bonding, π-π accumulation, hydrophobic interactions, cation-π interactions, and pore adsorption by MOFs. Under the optimal conditions, a simple, efficient, and sensitive method for the analysis of six organic pesticides in environmental water samples was developed by using the ZIF-HMC as the extraction medium coupled with high performance liquid chromatography-ultraviolet (HPLC-UV). The method had a wide linear range (0.63-1000 µg L-1), a low detection limit (0.19-1.91 µg L-1) and satisfactory recoveries (87.4 %-110.2 %), the linear correlation coefficient was (R2) 0.9972-0.9995 and the relative standard deviation (RSD) was less than 2.64 %. The study had demonstrated the potential application of the developed method for the enrichment and analysis of organic pesticides in complex matrices of environmental samples, as well as the feasibility of MOFs materials for IT-SPME sample preparation.

3.
J Colloid Interface Sci ; 678(Pt A): 511-519, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39214003

RESUMO

PtNC single-atom catalysts (SACs) single-atom catalysts (SACs) are promising for acidic hydrogen evolution reaction (HER) but suffer from instability at high current densities, limiting their large-scale application. Herein, PtO bonds are constructed to securely anchor atomically dispersed Pt for single-atom (SA) catalysis, utilizing etched vertical graphene (EVG) nanosheets as monolithic supports (Pt-SAs/EVG). Compared to PtNC, the resultant PtO4 coordination demonstrates improved stability while maintaining significant catalytic activity. When applying this catalyst in the acidic HER, a high turnover frequency (34.6 s-1) is achieved at 70 mV, accompanied by exceptional durability exceeding 100 h at -100 mA cm-2. Theoretical analyses indicate that the PtO bonds confer stability to the Pt atoms, facilitating the efficient adsorption of protons and the subsequent desorption of hydrogen. The prepared Pt-SAs/EVG can also be directly employed as the cathode to afford stable operation at 0.5 A cm-2 in a proton exchange membrane electrolyzer cell. This study offers novel insights into enhancing the performance of SACs for industrial applications in electrocatalysis.

4.
Food Chem ; 463(Pt 2): 141210, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270492

RESUMO

S-nitrosoglutathione (GSNO) is the most important S-nitrosothiol in vivo, which could affect the quality of meat by participating in calcium release, glucose metabolism, proteolysis and apoptosis, therefore may potentially serve as a marker for meat freshness. In this work, a solid-phase extraction (SPE) monolithic spin column modified with gold nanoparticles was prepared for GSNO extraction. The optimized SPE-LC-MS/MS method for GSNO quantification displays low limit of detection (0.01 nM), good precision (RSD < 15 %) and acceptable recovery (> 77.7 %). Furthermore, this approach has been applied to monitor GSNO levels in beef and pork stored at -20 °C for different days, showing that endogenous GSNO level increases during prolonged storage and could be employed as a marker to evaluate the freshness of ice stored meat. Additionally, the monolithic spin column remains in good quality after a half-year storage, which is promising to develop into commercial enrichment kit for endogenous GSNO analysis.


Assuntos
Ouro , Carne , Nanopartículas Metálicas , S-Nitrosoglutationa , Extração em Fase Sólida , Ouro/química , Animais , S-Nitrosoglutationa/química , Nanopartículas Metálicas/química , Carne/análise , Bovinos , Suínos , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Polímeros/química , Cromatografia Líquida de Alta Pressão , Armazenamento de Alimentos
5.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095186

RESUMO

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Assuntos
Compostos de Manganês , Níquel , Óxidos , Ozônio , Óxidos/química , Níquel/química , Compostos de Manganês/química , Ozônio/química , Catálise , Umidade , Cobalto/química , Modelos Químicos , Poluentes Atmosféricos/química
6.
J Environ Sci (China) ; 149: 209-220, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181635

RESUMO

Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.


Assuntos
Poluentes Atmosféricos , Géis , Poluentes Atmosféricos/química , Géis/química , Atmosfera/química , Adsorção , Dióxido de Carbono/química , Recuperação e Remediação Ambiental/métodos , Dióxido de Silício/química
7.
Materials (Basel) ; 17(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39410443

RESUMO

Vertical-cavity surface-emitting lasers (VCSELs) are essential for exhibiting single-transverse-mode output characteristics, which are critical for applications in quantum sensing, optical interconnection, and laser printing. In this study, we achieved stable single-transverse-mode lasing using extended-2λ-cavity with an oxide aperture diameter of 7.08 µm. The device demonstrated a high output power of 6.8 mW and a narrow linewidth of 49.8 MHz at room temperature. Additionally, it maintained stable single-mode emission at 794.8 nm and achieved a side-mode suppression ratio (SMSR) exceeding 40 dB within the temperature range of 25 °C~85 °C, thereby meeting the requirements of 87Rb atom quantum sensors. The fabricated device obtained high-power and narrow linewidth single-transverse-mode operation by a monolithic extended cavity without introducing additional processing procedures, which is expected to promote the commercial viability of VCSELs in quantum sensing.

8.
Waste Manag ; 190: 370-381, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393307

RESUMO

Soil column tests were conducted to investigate methane oxidation efficiency in three configurations of earthen landfill cover under two drying stages separated by an applied rainfall, including the monolithic evapotranspiration (ET) cover, the cover with capillary barrier effect (CCBE) and the three-layer cover. Comprehensive measurements were also documented for water-gas response in soil for analyzing the experimental outcomes. The maximum methane oxidation efficiency of three-layer cover, monolithic ET cover, and CCBE were about 71 %, 62 % and 58 %, respectively. This was because the three-layer cover had the largest oxygen (O2) concentration in soil above depth of 400 mm, where methane oxidation mainly occurred. This was due to the good airtightness of the bottom hydraulic barrier layer, which led to the lowest air pressure above depth of 400 mm, thereby promoting the entry of atmospheric O2 into the soil. The monolithic ET cover generally had a larger methane oxidation efficiency than CCBE during the first drying stage by up to 12 %, while the trend reversed overall during the second drying stage, likely due to the enhanced air-tightness of CCBE caused by higher soil water content after rainfall induced by the capillary barrier effects. The methane oxidation efficiency for each landfill cover became lower by up to 30 % during the second drying stage than that during the first drying stage, owing to the higher water content during the second drying stage after rainfall, leading to a larger gas pressure and hence a lower O2 concentration at shallow soil.

9.
J Esthet Restor Dent ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39460507

RESUMO

OBJECTIVES: This study compares the restoration of single-tooth implants with screw-retained lithium-disilicate hybrid-abutment crowns and single-tooth lithium-disilicate crowns adhesively bonded to hybrid abutments with regard to objective clinical and subjective patient-specific evaluation criteria over a time of observation of 3 years. MATERIALS AND METHODS: Two bone-level implants were placed in contralateral sides of the same jaw in 10 patients, each with two single-tooth gaps. After osseointegration, implants were uncovered and an impression was taken. In accordance with the split-mouth design, one implant in each patient was restored with a screw-retained hybrid abutment crown and the other implant with a hybrid abutment and an adhesively bonded single-tooth crown. The restorations were randomly allocated to the implants. Prefabricated titanium bases were used. The ceramic abutments and restorations were fabricated monolithically with pressed lithium-disilicate ceramic. An objective evaluation (survival, technical, or biological complications, FIPS) by the practitioner and a subjective evaluation (satisfaction, OHIP) by the patient were carried out after 3, 6, 12, 24, and 36 months after restoration placement. RESULTS: Both restoration types showed a survival rate of 100% after 3 years of observation. No technical or biological complications occurred. No significant difference was observed between the two types of restoration neither for objective (survival, technical or biological complications, FIPS) nor subjective (satisfaction, OHIP) evaluation criteria (p > 0.05). CONCLUSION: No statistically significant differences were observed between screw-retained and cemented pressed lithium-disilicate restorations on bone-level implants for both objective and subjective evaluation criteria, respectively. CLINICAL SIGNIFICANCE: Monolithic hybrid-abutment crowns (screw-retained) and monolithic hybrid abutments with single-tooth crowns (cemented) made of pressed lithium disilicate can be used to successfully restore single implants.

10.
Molecules ; 29(20)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39459311

RESUMO

MonoTrapTM was introduced in 2009 as a novel miniaturized configuration for sorptive sampling. The method for the characterization of volatile organic compound (VOC) emission profiles from hot mix asphalt (HMA) consisted of a two-step procedure: the analytes, initially adsorbed into the coating in no vacuum- or vacuum-assistance mode, were then analyzed following an automated thermal desorption (TD) step. We took advantage of the theoretical formulation to reach some conclusions on the relationship between the physical characteristics of the monolithic material and uptake rates. A total of 35 odor-active volatile compounds, determined by gas chromatography-mass spectrometry/olfactometry analysis, contributed as key odor compounds for HMA, consisting mainly of aldehydes, alcohols, and ketones. Chemometric analysis revealed that MonoTrapTM RGC18-TD was the better coating in terms of peak area and equilibrium time. A comparison of performance showed that Vac/no-Vac ratios increased, about an order of magnitude, as the boiling point of target analytes increased. The innovative hybrid adsorbent of silica and graphite carbon monolith technology, having a large surface area bonded with octadecylsilane, showed effective adsorption capability, especially to polar compounds.

11.
J Chromatogr A ; 1737: 465464, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39467512

RESUMO

A carboxyl functionalized organic-inorganic hybrid monolithic column (TMOS-co-CES) was applied as in-tube solid-phase microextraction (SPME) sorbent combining with ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometer for separation and analyzation of seven typical amphetamine-type stimulants (ATSs), including amphetamine (AM), methamphetamine (MAM), cathinone, methcathinone, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyethylamphetamine. The application potential of TMOS-co-CES material to ATSs was preliminarily confirmed by computational simulation by using cathinone as a representative. The influences of various SPME parameters and analytical performance were investigated systematically. As matched with the results of computational simulation, TMOS-co-CES column could capture ATSs under milder near neutral pH condition with high extraction efficiency basing on the adsorption mechanism explained as a mixed mode of electrostatic and hydrophobic interactions. Seven target trace ATSs in spiked sewage, pond water and urine could be rapidly and conveniently separated and enriched by the proposed TMOS-co-CES in-tube SPME method under the optimized conditions with good accuracy, repeatability and resistance to matrix interference. Moreover, AM and MAM had been successfully detected in real urines of suspected drug abusers by TMOS-co-CES in-tube SPME method, which indicated that the proposed method had good application feasibility for drug monitoring. The mild extraction condition and ideal method performance further made the TMOS-co-CES in-tube SPME method more potential in applications for forensic analysis and drug abuse.

12.
Se Pu ; 42(11): 1087-1093, 2024 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-39449516

RESUMO

Metal organic frameworks (MOFs) are crystalline compounds composed of metal ions (or metal clusters) and organic ligands. Chiral MOFs have been successfully utilized as novel materials for the separation of chiral enantiomers by chromatography, demonstrating excellent chiral separation performance. In this study, a chiral MOF-modified silica monolithic capillary column was used for pressurized capillary electrochromatography. First, a chiral MOF (Co-glycyl-L-glutamic acid, Co-L-GG) was synthesized. This MOF was then used to prepare a chiral capillary monolithic column via a one-step in situ polymerization method. The optimal conditions for preparing the chiral capillary monolithic column were determined as follows: Co-L-GG amount, 5 mg; polyethylene glycol amount, 0.96 mg; tetramethoxysilane dosage, 3.6 mL; trimethoxymethylsilane dosage, 0.4 mL. Next, the effects of the separation conditions on the separation of chiral drugs were investigated. Under the conditions of an applied voltage of -20 kV and a mobile phase consisting of acetonitrile and 20 mmol/L disodium hydrogen phosphate (80∶20, v/v), six chiral drugs were separated within 3 min, with baseline separation achieved for amlodipine, fluvastatin, and tryptophan. Moreover, the prepared chiral capillary monolithic column exhibited good reproducibility and stability. Finally, molecular docking studies were conducted using AutoDock to explore the chiral recognition mechanism, and the results were analyzed using Discovery Studio. The results indicated that larger differences in binding free energy between Co-L-GG and the enantiomers of the chiral drugs were correlated with higher enantioselectivity factors. However, this correlation did not necessarily lead to an increase in resolution. Co-L-GG, which is enriched with primary amines, secondary amines, and carbonyl groups, demonstrated enantiomeric recognition capability. In conclusion, this study demonstrates that chiral MOFs can be effectively used as chiral functional monomers to prepare chiral monolithic capillary columns, highlighting their significant potential for the separation and analysis of chiral compounds. The comprehensive exploration of the synthesis, characterization, and applications of these MOFs will help provide valuable insights into the development of advanced separation technologies.


Assuntos
Dióxido de Silício , Estereoisomerismo , Dióxido de Silício/química , Eletrocromatografia Capilar/métodos , Estruturas Metalorgânicas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação
13.
Mikrochim Acta ; 191(10): 598, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271489

RESUMO

Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L-1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.

14.
ACS Appl Mater Interfaces ; 16(40): 54092-54104, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39317960

RESUMO

N-doped carbon materials have garnered extensive development in electrochemical CO2 reduction due to their abundant sources, high structural plasticity, and excellent catalytic performance. However, the use of powder carbon materials for electrocatalytic reactions limits their current density and mechanical strength, which pose challenges for industrial applications. In this study, we synthesized a monolithic N-doped carbon electrode with high mechanical strength for efficient electrochemical reduction of CO2 to CO through a simple pyrolysis method, using phenolic resin as the precursor and ZIF-8 as the sacrificial template. At 900 °C, the decomposition of ZIF-8 and the volatilization of Zn atoms promote the formation of a hierarchical porous structure in the carbon matrix, characterized by macropores with extended mesoporous channels. Simultaneously, N active species derived from ZIF-8 are effectively generated around the pores and fully exposed. The efficient mass transfer facilitated by the hierarchical porous structure and high activity of exposed nitrogen species enables efficient conversion of CO2 to CO. When the ZIF-8 content is 30%, the catalyst achieves a Faradaic efficiency of 88.9% for CO at a low potential of -0.7 V (vs RHE), with a CO production rate of 244.05 µmol h-1 cm-2. After 50 h of potentiostatic electrolysis, the current density and FECO remain stable. This work not only provides a strategy for the synergistic effects of hierarchical porous structures and nitrogen doping but also offers an effective method to avoid using powder binders and prepare integrated, stable monolithic electrodes.

15.
J Dent ; 150: 105350, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39321738

RESUMO

OBJECTIVE: To assess the clinical performance of monolithic screw-retained implant-supported zirconia crowns (MSI) bonded or mechanically retained on prefabricated Ti-bases using a complete digital workflow. METHODS: A retrospective analysis was conducted on patients who underwent single dental implant procedures between January 2017 and May 2018. Inclusion criteria were: patients over 18 years of age; implants placed in posterior sites; MSI on prefabricated Ti-base realized by using a complete digital workflow; a minimum follow-up period of 2 years. Cemented crowns and fixed dental prosthesis were excluded. Mechanical complications included: fracture of Ti-base; loss of retention; loosening of Ti-base screws. Technical complications included: fracture and debonding of monolithic zirconia. Biological complication was set strictly at a probing pocket depth of 5 mm and bleeding on probing or pus secretion. RESULTS: A total of 144 dental implants placed in 127 patients were included, 73 with a fully tapered implant system (BLX) and 71 with a conical connection system (Nobel Parallel CC). Of the 73 BLX implants, 4 experienced loosening of the Ti-base screw, while 3 Nobel Parallel CC implants experienced the same problem. In addition, 4 fractures of the Ti-base and 6 fractures of the inner surface of the monolithic zirconia were observed in the Nobel Parallel CC implants. Cumulative survival was 100 % for bonded crowns and 85 % for mechanically retained crowns. Radiographic evaluation revealed a mean CBL of 0.12 mm for the BLX and 0.13 mm for the Nobel Parallel CC implants with no statistically significant differences between the Ti-base types. There was no evidence of bleeding on probing or pus secretion. All probing pocket depths were <3 mm. CONCLUSION: The use of a prefabricated Ti-base remains a clinically acceptable choice, however, MSIs bonded to prefabricated Ti-bases had fewer mechanical and technical complications than the MSI mechanically retained to a prefabricated Ti-base.


Assuntos
Coroas , Prótese Dentária Fixada por Implante , Falha de Restauração Dentária , Titânio , Zircônio , Humanos , Zircônio/química , Estudos Retrospectivos , Titânio/química , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Idoso , Planejamento de Prótese Dentária , Materiais Dentários/química , Implantes Dentários para Um Único Dente , Desenho Assistido por Computador , Colagem Dentária
16.
J Esthet Restor Dent ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228147

RESUMO

OBJECTIVE: The purpose of this in vitro study was to evaluate the effect of staining, glazing, and polishing on the survival probability of monolithic crowns manufactured with preshaded stabilized zirconia with 5 mol% of yttrium oxide (5Y-TZP). MATERIALS AND METHODS: Monolithic crowns in the shape of an upper canine (1.5 mm of thickness) were manufactured by CAD/CAM, adhesively cemented on metallic foundation, and divided into 6 groups (n = 21): C (control), S (staining), G (glazing), P (polishing), SG (staining and glazing), and SP (staining and polishing). The survival probability was determined by step-stress accelerated life testing with a load applied to the palatine concavity of the crown. First, the specimens were subjected to a single-load to fracture test (SLF) and next to the fatigue test (5 Hz, thermocycling immersed in water varying 5-55°C), including the light (n = 9), moderate (n = 6), and aggressive (n = 3) loading profiles (load ranged between 20% and 60% of SLF). The survival probability was calculated considering the cycles for failure (CFF) and fatigue failure load (FFL) and illustrated using a Kaplan-Meier graph. The comparison among groups was performed using a Log-Rank test (α = 0.05). RESULTS: The mean value of SLF was 586.7 N. There was no difference among groups in survival probability, considering CFF and FFL. CONCLUSION: Staining, glazing, and polishing can be performed safely without damaging the mechanical behavior of 5Y-TZP monolithic crowns. CLINICAL SIGNIFICANCE: Staining is used to characterize and improve the esthetic of zirconia monolithic crowns. It can be used to reproduce the color gradient in the cervical region of the crown and pigmented grooves. This study showed that staining, glazing, and polishing did not affect the survival probability and the use of finishing procedures (glazing or polishing) after staining did not improve the survival probability of zirconia monolithic crowns.

17.
Cureus ; 16(8): e66029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39221297

RESUMO

Monolithic zirconia is widely used in dentistry due to its outstanding mechanical properties, biocompatibility, and aesthetic qualities. This review examines how different polishing and finishing methods impact the performance and appearance of monolithic zirconia restorations. Derived from zirconium, zirconia is a robust ceramic that exists in monoclinic, tetragonal, and cubic forms, with properties that prevent crack propagation. Monolithic zirconia, preferred over porcelain-fused-to-metal (PFM) crowns, offers better aesthetics and avoids chipping. Various surface treatments, such as polishing and glazing, enhance zirconia's smoothness and wear characteristics. Polished zirconia is less abrasive to enamel than glazed zirconia, making it more suitable for opposing teeth. Research indicates that polished zirconia has a smoother surface and higher fracture resistance compared to other dental ceramics. Surface roughness, which is influenced by the treatment method, is crucial in minimizing wear on opposing teeth. Polished monolithic zirconia also shows high flexural strength, chipping resistance, and translucency. While both polishing and glazing reduce brightness, polishing better preserves translucency. The literature identifies polishing as the best post-processing method for enhancing zirconia's surface quality and mechanical properties without compromising its load-bearing capacity. In conclusion, polishing and finishing significantly improve the aesthetic and clinical performance of monolithic zirconia, confirming its effectiveness for durable and visually appealing dental restorations.

18.
J Prosthodont ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331036

RESUMO

PURPOSE: A newly introduced sintering protocol promises to offer higher translucency while not significantly compromising the flexural strength of the material. However, the effect of the novel sintering protocol has not been thoroughly validated. The purpose of this study was to measure and compare the effect of two sintering protocols on the translucency and flexural strength of two multilayered zirconia materials. MATERIALS AND METHODS: Two types of multilayered zirconia materials (ZirCAD Prime and Prime esthetic) were selected. Presintered disk specimens were obtained from Translucent, Gradient, and Dentin layers (n = 20). The disks were allocated to 2 groups: standard sintering protocol (peak temperature 1500°C) and high translucency sintering protocol (peak temperature 1600°C). After the sintering process, 10 specimens from each group were randomly selected. The optical values (L*, a*, b*) were measured and used to assess translucency using the relative translucency parameter (RTP00) and translucency differences (ΔRTP00). Then, all 20 specimens were tested for biaxial flexural strength. The outcomes were analyzed. The analysis of variance is used to analyze any significant effects on translucency and flexural strength. Then, any significant difference in the translucency and flexural strength between all pairs of materials was analyzed using Bonferroni-corrected Student's t-test (α = 0.05). RESULTS: The high translucency sintering protocol significantly decreased biaxial strength in the Prime translucent and dentine layer, Prime esthetic translucent, and gradient layer. RTP00 was significantly reduced in the Prime gradient and Prime esthetic gradient layer when sintered with a high translucency protocol. The lowest ΔRTP00 was observed in the Prime dentine layer, while the highest ΔRTP00 was observed in the Prime esthetic dentin layer. CONCLUSIONS: High translucency protocol significantly lowers the biaxial flexural strength of both multilayered materials, but the alteration in translucency is within clinically acceptable thresholds (TAT00 = 2.62).

19.
J Hazard Mater ; 480: 135849, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39298962

RESUMO

Ground-level ozone (O3) pollution poses a significant threat to both ecosystem sustainability and human health. The catalytic decomposition of O3 presents as a promising technology to address the issues of O3 pollution. This study undertook the synthesis of various functionalized metal-organic framework (MOF) catalysts (i.e., X-MIL-53(Fe) (X = H, NH2, NO3)) to delve into the influence of ligand functional groups on skeletal structure and catalytic efficacy, particularly focusing on unraveling the mechanism of O3 catalytic decomposition under humid conditions. NH2-MIL-53(Fe) catalyst achieved complete O3 decomposition under ambient temperature and high humidity conditions (RH=75 %), exhibiting a reaction rates (mol·m-2·s-1) 129 and 10.5 times greater than that of MIL-53(Fe) and NO2-MIL-53(Fe). The NH2 group promotes electron flow within the backbone towards the hydroxyl group (OH) linked to Fe atom. In humid O3, H2O molecules augment the interaction between O3 and NH2-MIL-53(Fe), and OH is converted to·O2- after deprotonation, promoting O3 decomposition. Additionally, leveraging three-dimensional (3D) printing technology, a monolithic catalyst for O3 decomposition was prepared for application. This study not only advances understanding of the mechanisms underlying O3 decomposition but also offers practical solutions for addressing O3 pollution at humid conditions.

20.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39275594

RESUMO

Monolithic zirconia (MZ) crowns are widely utilized in dental restorations, particularly for substantial tooth structure loss. Inspection, tactile, and radiographic examinations can be time-consuming and error-prone, which may delay diagnosis. Consequently, an objective, automatic, and reliable process is required for identifying dental crown defects. This study aimed to explore the potential of transforming acoustic emission (AE) signals to continuous wavelet transform (CWT), combined with Conventional Neural Network (CNN) to assist in crack detection. A new CNN image segmentation model, based on multi-class semantic segmentation using Inception-ResNet-v2, was developed. Real-time detection of AE signals under loads, which induce cracking, provided significant insights into crack formation in MZ crowns. Pencil lead breaking (PLB) was used to simulate crack propagation. The CWT and CNN models were used to automate the crack classification process. The Inception-ResNet-v2 architecture with transfer learning categorized the cracks in MZ crowns into five groups: labial, palatal, incisal, left, and right. After 2000 epochs, with a learning rate of 0.0001, the model achieved an accuracy of 99.4667%, demonstrating that deep learning significantly improved the localization of cracks in MZ crowns. This development can potentially aid dentists in clinical decision-making by facilitating the early detection and prevention of crack failures.


Assuntos
Coroas , Aprendizado Profundo , Zircônio , Zircônio/química , Humanos , Redes Neurais de Computação , Acústica , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA