Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Sci Rep ; 14(1): 18265, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107421

RESUMO

Atypical haemolytic uremic syndrome (aHUS) is a rare disorder characterised by complement-mediated thrombotic microangiopathy (TMA). Despite clinical guidelines, the diagnosis and treatment of aHUS in its early stages remains challenging. This study examined the annual trends in aHUS clinical practices in Japan and explored factors influencing early diagnosis and treatment. Using data from the 2011-2020 Diagnosis Procedure Combination database, 3096 cases with the HUS disease code were identified, of which 217 were confirmed as aHUS and treated with eculizumab or plasma exchange. Early initiation, defined as starting eculizumab or plasma exchange within 7 days of admission, was the focus of the study. Our study revealed no significant changes over time in the number of aHUS diagnoses, cases treated with eculizumab, or early initiation cases. Early initiation cases underwent haemodialysis earlier and had ADAMTS13 activity measured earlier, shorter hospital stays, and lower hospitalisation costs than late initiation cases. In conclusion, we found no increase in the number of newly diagnosed aHUS cases or early treatment initiation over time. Early recognition of TMA and differentiation of the causative disease are crucial for identifying potential aHUS cases, which may lead to better patient prognoses.


Assuntos
Anticorpos Monoclonais Humanizados , Síndrome Hemolítico-Urêmica Atípica , Diagnóstico Precoce , Troca Plasmática , Humanos , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Síndrome Hemolítico-Urêmica Atípica/terapia , Síndrome Hemolítico-Urêmica Atípica/epidemiologia , Japão/epidemiologia , Feminino , Estudos Retrospectivos , Masculino , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Pessoa de Meia-Idade , Adolescente , Proteína ADAMTS13 , Adulto Jovem , Idoso , Criança , Pré-Escolar , Diálise Renal
2.
Methods Mol Biol ; 2845: 219-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115670

RESUMO

Isothermal titration calorimetry (ITC) is a widely used technique for the characterization of protein-protein and protein-ligand interactions. It provides information on the stoichiometry, affinity, and thermodynamic driving forces of interactions. This chapter exemplifies the use of ITC to investigate interactions between human autophagy modifiers (LC3/GABARAP proteins) and their interaction partners, the LIR motif-containing sequences. The purpose of this report is to present a detailed protocol for the production of LC3/GABARAP-interacting LIR peptides using E. coli expression systems. In addition, we outline the design of ITC experiments using the LC3/GABARAP:peptide interactions as an example. Comprehensive troubleshooting notes are provided to facilitate the adaptation of these protocols to different ligand-receptor systems. The methodology outlined for studying protein-ligand interactions will help to avoid common errors and misinterpretations of experimental results.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Calorimetria , Proteínas Associadas aos Microtúbulos , Ligação Proteica , Termodinâmica , Calorimetria/métodos , Humanos , Ligantes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Escherichia coli/metabolismo , Peptídeos/química , Peptídeos/metabolismo
3.
J Biol Chem ; : 107666, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128720

RESUMO

ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide binding domains (NBDs), have been genetically linked to Stargardt disease (STGD1). Here, we show by Cryo-electron microscopy that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of AMP-PNP. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues including the R1108C, R2077W, R2107H and L2027F affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying STGD1.

4.
J Membr Biol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150496

RESUMO

TRPM8 is a non-selective cation channel that is expressed in several tissues and cells and also has a unique property to be activated by low-temperature. In this work, we have analyzed the conservation of amino acids that are present in the lipid-water-interface (LWI) region of TRPM8, the region which experiences a microenvironment near the membrane surface. We demonstrate that the amino acids present in the LWI region are more conserved than the transmembrane or even full-length TRPM8, suggesting strong selection pressure in these residues. TRPM8 also has several conserved cholesterol-binding motifs where cholesterol can bind in different modes and energies. We suggest that mutations and/or physiological conditions can potentially alter these TRPM8-cholesterol complexes and can lead to physiological disorders or even apparently irreversible diseases such as cancer and neurodegeneration.

5.
Comput Biol Med ; 179: 108926, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038391

RESUMO

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).


Assuntos
Peptídeos , Software , Peptídeos/química , Humanos , Biologia Computacional/métodos , Aprendizado Profundo , Bases de Dados de Proteínas
6.
Sci Rep ; 14(1): 17212, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060315

RESUMO

Alternative splicing is a crucial process in multicellular eukaryote, facilitated by the assembly of spliceosomal complexes comprising numerous small ribonucleoproteins. At an early stage, U1C is thought to be required for 5' splice site recognition and base pairing. However, a systematic analysis of the U1C gene family in response to developmental cues and stress conditions has not yet been conducted in plants. This study identified 114 U1C genes in 72 plant species using basic bioinformatics analyses. Phylogenetic analysis was used to compare gene and protein structures, promoter motifs, and tissue- and stress-specific expression levels, revealing their functional commonalities or diversity in response to developmental cues, such as embryonic expression, or stress treatments, including drought and heat. Fluorescence quantitative expression analysis showed that U1C gene expression changed under salt, low temperature, drought, and Cd stress in rice seedlings. However, gene expression in shoots and roots was not consistent under different stress conditions, suggesting a complex regulatory mechanism. This research provides foundational insights into the U1C gene family's role in plant development and stress responses, highlighting potential targets for future studies.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Oryza/genética , Oryza/metabolismo , Processamento Alternativo , Secas , Regiões Promotoras Genéticas
7.
Artigo em Inglês | MEDLINE | ID: mdl-39004301

RESUMO

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.


Assuntos
Sequência de Aminoácidos , Decápodes , Osmorregulação , Filogenia , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Osmorregulação/genética , Decápodes/genética , Decápodes/enzimologia , Decápodes/fisiologia , Evolução Molecular , Brânquias/metabolismo , Brânquias/enzimologia
8.
Thromb J ; 22(1): 67, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039520

RESUMO

Thrombocytopenia frequently occurs in patients with sepsis. Disseminated intravascular coagulation (DIC) may be a possible cause of thrombocytopenia owing to its high prevalence and association with poor outcomes; however, it is important to keep the presence of other diseases in mind in sepsis practice. Thrombotic microangiopathy (TMA), which is characterized by thrombotic thrombocytopenic purpura, Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (HUS), and complement-mediated HUS, is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ damage. TMA has become widely recognized in recent years because of the development of specific treatments. Previous studies have reported a remarkably lower prevalence of TMA than DIC; however, its epidemiology is not well defined, and there may be cases in which TMA is not correctly diagnosed, resulting in poor outcomes. Therefore, it is important to differentiate DIC from TMA. Nevertheless, differentiating between DIC and TMA remains a challenge as indicated by previous reports that most patients with TMA can be diagnosed as DIC using the universal coagulation scoring system. Several algorithms to differentiate sepsis-related DIC from TMA have been suggested, contributing to improving the care of septic patients with thrombocytopenia; however, it may be difficult to apply these algorithms to patients with coexisting DIC and TMA, which has recently been reported. This review describes the disease characteristics, including epidemiology, pathophysiology, and treatment, of DIC, TMA, and other diseases with thrombocytopenia and proposes a novel practical approach flow, which is characterized by the initiation of the diagnosis of TMA in parallel with the diagnosis of DIC. This practical flow also refers to the longitudinal diagnosis and treatment flow with TMA in mind and real clinical timeframes. In conclusion, we aim to widely disseminate the results of this review that emphasize the importance of incorporating consideration of TMA in the management of septic DIC. We anticipate that this practical new approach for the diagnostic and treatment flow will lead to the appropriate diagnosis and treatment of complex cases, improve patient outcomes, and generate new epidemiological evidence regarding TMA.

9.
Methods Mol Biol ; 2812: 317-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068371

RESUMO

Differentially expressed genes in a cellular context may be co-regulated by the same transcription factor. However, in the absence of a concurrent transcription factor binding data, such interactions are difficult to detect, especially at the single cell expression level. Motif enrichments in such genes can be used to gain insight into differential expressions caused by the shared upstream TFs. However, it is now established that many genes are co-regulated by the same TF due to a shared DNA shape or sequence-dependent conformational dynamics instead of sequence motif. In this work, we demonstrate how, starting from a gene expression data, such DNA shape and dynamics signatures can be potentially detected using publicly available tools, including DynaSeq, developed in our group for predicting the sequence-dependent components of these DNA shape features.


Assuntos
DNA , Conformação de Ácido Nucleico , DNA/genética , DNA/metabolismo , DNA/química , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Software
10.
Front Plant Sci ; 15: 1429011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081522

RESUMO

The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.

11.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 800-805, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38974147

RESUMO

The crystal structures of 4-benzyl-1H-pyrazole (C10H10N2, 1) and 3,5-di-amino-4-benzyl-1H-pyrazole (C10H12N4, 2) were measured at 150 K. Although its different conformers and atropenanti-omers easily inter-convert in solution by annular tautomerism and/or rotation of the benzyl substituent around the C(pyrazole)-C(CH2) single bond (as revealed by 1H NMR spectroscopy), 1 crystallizes in the non-centrosymmetric space group P21. Within its crystal structure, the pyrazole and phenyl aromatic moieties are organized into alternating bilayers. Both pyrazole and phenyl layers consist of aromatic rings stacked into columns in two orthogonal directions. Within the pyrazole layer, the pyrazole rings form parallel catemers by N-H⋯N hydrogen bonding. Compound 2 adopts a similar bilayer structure, albeit in the centrosymmetric space group P21/c, with pyrazole N-H protons as donors in N-H⋯π hydrogen bonds with neighboring pyrazole rings, and NH2 protons as donors in N-H⋯N hydrogen bonds with adjacent pyrazoles and other NH2 moieties. The crystal structures and supra-molecular features of 1 and 2 are contrasted with the two known structures of their analogs, 3,5-dimethyl-4-benzyl-1H-pyrazole and 3,5-diphenyl-4-benzyl-1H-pyrazole.

12.
Biomed Rep ; 21(2): 125, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39006509

RESUMO

Human papillomaviruses (HPVs) infect cutaneous and mucosal epithelia to cause benign (warts) and malignant lesions (e.g. cervical cancer). Bovine papillomaviruses (BPVs) infect fibroblasts to cause fibropapillomas but can also infect cutaneous epithelial cells. For HPV-1, -16, -31 and BPV-1, cis-acting RNA elements in the late 3' untranslated region (3'UTR) control expression of virus proteins by binding host cell proteins. The present study compared the effects on gene expression of the cis-acting elements of seven PV late 3'UTRs (HPV-6b, -11, -16, -31 and BPV-1, -3 and -4) representing a range of different genera and species and pathological properties. pSV-beta-galactosidase reporter plasmids containing the late 3'UTRs from seven PVs were transiently transfected into cervical adenocarcinoma HeLa cells, and reporter gene expression quantified by reverse transcription-quantitative PCR and a beta-galactosidase assay. All elements inhibited gene expression in keratinocytes. Cancer-related types HPV-16 and -31, had the greatest inhibitory activity whereas the lowest inhibition was found in the non-cancer related types, BPV-3 and HPV-11. Using RBPmap version 1.1, bioinformatics predictions of factors binding the elements identified proteins which function mainly in mRNA splicing. Markedly, in terms of protein binding motifs, BPV late 3'UTR elements were similar to those of HPV-1a but not to other HPVs. Using HPV-1a as a model and siRNA depletion, the bioinformatics predictions were tested and it was found that PABPC4 was responsible for some of the 3'UTR repressive activity. The data revealed candidate proteins that could control PV late gene expression.

14.
Beilstein J Org Chem ; 20: 1476-1485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978744

RESUMO

Polyketides are a major class of natural products, including bioactive medicines such as erythromycin and rapamycin. They are often rich in stereocenters biosynthesized by the ketoreductase (KR) domain within the polyketide synthase (PKS) assembly line. Previous studies have identified conserved motifs in KR sequences that enable the bioinformatic prediction of product stereochemistry. However, the reliability and applicability of these prediction methods have not been thoroughly assessed. In this study, we conducted a comprehensive bioinformatic analysis of 1,762 KR sequences from cis-AT PKSs to reevaluate the residues involved in conferring stereoselectivity. Our findings indicate that the previously identified fingerprint motifs remain valid for KRs in ß-modules from actinobacteria, but their reliability diminishes for KRs from other module types or taxonomic origins. Additionally, we have identified several new motifs that exhibit a strong correlation with the stereochemical outcomes of KRs. These updated fingerprint motifs for stereochemical prediction not only enhance our understanding of the enzymatic mechanisms governing stereocontrol but also facilitate accurate stereochemical prediction and genome mining of polyketides derived from modular cis-AT PKSs.

15.
Chemistry ; : e202402532, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049434

RESUMO

A route is developed to (g,g',g''''-trifluoro)neopentyl (TFNP) aryl ethers to extend the methods for the introduction of the tert-butyl group, carrying a fluorine on each of the methyl  substituents. The route combines neopentyltosylate 3 with phenols and thiophenols to give efficient substitution reactions to the corresponding TFNP aryl ethers. The three C-F bonds adopt a helical propeller conformation as revealed by computation and single crystal X-ray structure analysis. The LogPs of TFNP ethers are lower (more hydrophilic) than their tert-butyl analogues. The metabolism of selected TFNP ethers was explored in the fungus Cunninghamella elegans.

16.
Comput Biol Chem ; 112: 108158, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053174

RESUMO

Studying the relationship between sequences and their corresponding three-dimensional structure assists structural biologists in solving the protein-folding problem. Despite several experimental and in-silico approaches, still understanding or decoding the three-dimensional structures from the sequence remains a mystery. In such cases, the accuracy of the structure prediction plays an indispensable role. To address this issue, an updated web server (CSSP-2.0) has been created to improve the accuracy of our previous version of CSSP by deploying the existing algorithms. It uses input as probabilities and predicts the consensus for the secondary structure as a highly accurate three-state Q3 (helix, strand, and coil). This prediction is achieved using six recent top-performing methods: MUFOLD-SS, RaptorX, PSSpred v4, PSIPRED, JPred v4, and Porter 5.0. CSSP-2.0 validation includes datasets involving various protein classes from the PDB, CullPDB, and AlphaFold databases. Our results indicate a significant improvement in the accuracy of the consensus Q3 prediction. Using CSSP-2.0, crystallographers can sort out the stable regular secondary structures from the entire complex structure, which would aid in inferring the functional annotation of hypothetical proteins. The web server is freely available at https://bioserver3.physics.iisc.ac.in/cgi-bin/cssp-2/.

17.
J Am Soc Mass Spectrom ; 35(8): 1902-1912, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058243

RESUMO

Endogenous peptides are an abundant and versatile class of biomolecules with vital roles pertinent to the functionality of the nervous, endocrine, and immune systems and others. Mass spectrometry stands as a premier technique for identifying endogenous peptides, yet the field still faces challenges due to the lack of optimized computational resources for reliable raw mass spectra analysis and interpretation. Current database searching programs can exhibit discrepancies due to the unique properties of endogenous peptides, which typically require specialized search considerations. Herein, we present a high throughput, novel scoring algorithm for the extraction and ranking of conserved amino acid sequence motifs within any endogenous peptide database. Motifs are conserved patterns across organisms, representing sequence moieties crucial for biological functions, including maintenance of homeostasis. MotifQuest, our novel motif database generation algorithm, is designed to work in partnership with EndoGenius, a program optimized for database searching of endogenous peptides and that is powered by a motif database to capitalize on biological context to produce identifications. MotifQuest aims to quickly develop motif databases without any prior knowledge, a laborious task not possible with traditional sequence alignment resources. In this work we illustrate the utility of MotifQuest to expand EndoGenius' identification utility to other endogenous peptides by showcasing its ability to identify antimicrobial peptides. Additionally, we discuss the potential utility of MotifQuest to parse out motifs from a FASTA database file that can be further validated as new peptide drug candidates.


Assuntos
Algoritmos , Motivos de Aminoácidos , Bases de Dados de Proteínas , Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/química , Sequência de Aminoácidos , Software , Humanos , Animais
18.
Hum Mol Genet ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017605

RESUMO

Disease risk prediction based on genomic sequence and transcriptional profile can improve disease screening and prevention. Despite identifying many disease-associated DNA variants, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. In this study, we designed in vitro experiments to uncover the significance of occupancy and competitive binding between P53 and cMYC on common target genes. Analyzing publicly available ChIP-seq data for P53 and cMYC in embryonic stem cells showed that ~344-366 regions are co-occupied, and on average, two cis-overlapping motifs (CisOMs) per region were identified, suggesting that co-occupancy is evolutionarily conserved. Using U2OS and Raji cells untreated and treated with doxorubicin to increase P53 protein level while potentially reducing cMYC level, ChIP-seq analysis illustrated that around 16 to 922 genomic regions were co-occupied by P53 and cMYC, and substitutions of cMYC signals by P53 were detected post doxorubicin treatment. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data analysis. We utilized a computational motif-matching approach to illustrate that changes in predicted P53 binding affinity in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data, and expression of target genes from GTEx portal. We found significant correlation between change in cMYC-motif binding affinity in CisOMs and altered expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with common diseases.

19.
Front Genet ; 15: 1424085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952710

RESUMO

Motivation: The interaction between DNA motifs (DNA motif pairs) influences gene expression through partnership or competition in the process of gene regulation. Potential chromatin interactions between different DNA motifs have been implicated in various diseases. However, current methods for identifying DNA motif pairs rely on the recognition of single DNA motifs or probabilities, which may result in local optimal solutions and can be sensitive to the choice of initial values. A method for precisely identifying DNA motif pairs is still lacking. Results: Here, we propose a novel computational method for predicting DNA Motif Pairs based on Composite Heterogeneous Graph (MPCHG). This approach leverages a composite heterogeneous graph model to identify DNA motif pairs on paired sequences. Compared with the existing methods, MPCHG has greatly improved the accuracy of motifs prediction. Furthermore, the predicted DNA motifs demonstrate heightened DNase accessibility than the background sequences. Notably, the two DNA motifs forming a pair exhibit functional consistency. Importantly, the interacting TF pairs obtained by predicted DNA motif pairs were significantly enriched with known interacting TF pairs, suggesting their potential contribution to chromatin interactions. Collectively, we believe that these identified DNA motif pairs held substantial implications for revealing gene transcriptional regulation under long-range chromatin interactions.

20.
J Am Soc Mass Spectrom ; 35(8): 1713-1725, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38950165

RESUMO

Peatland fires emit organic carbon-rich particulate matter into the atmosphere. Boreal and Arctic peatlands are becoming more vulnerable to wildfires, resulting in a need for better understanding of the emissions of these special fires. Extractable, nonpolar, and low-polar organic aerosol species emitted from laboratory-based boreal and Arctic peat-burning experiments are analyzed by direct-infusion atmospheric pressure photoionization (APPI) ultrahigh-resolution mass spectrometry (UHRMS) and compared to time-resolved APPI UHRMS evolved gas analysis from the thermal analysis of peat under inert nitrogen (pyrolysis) and oxidative atmosphere. The chemical composition is characterized on a molecular level, revealing abundant aromatic compounds that partially contain oxygen, nitrogen, or sulfur and are formed at characteristic temperatures. Two main structural motifs are identified, single core and multicore, and their temperature-dependent formation is assigned to the thermal degradation of the lignocellulose building blocks and other parts of peat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA