Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Res Toxicol ; 2: 375-385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806038

RESUMO

The purpose of the present study was to investigate the vesicant countermeasure effects of hydrocortisone (HC) and ebselen (EB-1), administered as monotherapy or as a combination treatment. The mouse ear vesicant model (MEVM) was utilized and test doses of HC (0.016, 0.023, 0.031, 0.047, 0.063, 0.125 or 0.250 mg/ear), EB-1 (0.125, 0.187, 0.250, 0.375 or 0.500 mg/ear) or the combination of HC + EB-1 were topically applied at 15 min, 4 h and 8 h after nitrogen mustard exposure. Ear punch biopsies were obtained 24 h after mechlorethamine (HN2) exposure. Compared to control ears, ear tissues exposed topically to HN2 (0.500 µmol/ear) presented with an increase in ear thickness, vesication, TUNEL fluorescence and expression of matrix metalloproteinase 9 (MMP-9) and inducible nitric oxide synthase (iNOS). In contrast, HN2 exposed ears treated topically with EB-1 showed a significant decrease in morphometric thickness and vesication vs. HN2 alone. Ear tissues exposed to HN2 and then treated with HC also demonstrated reductions in morphometric thickness and vesication. Combination treatment of HC + EB-1 was found to be the most effective at reducing HN2-induced ear edema and vesication. The combination also dramatically decreased HN2-mediated cutaneous expression of iNOS and MMP-9 and decreased HN2-induced TUNEL staining. Taken together, our study demonstrates that the combination of HC + EB-1 is an efficacious countermeasure to HN2.

2.
Drug Chem Toxicol ; 43(4): 335-346, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30257109

RESUMO

Mechlorethamine (HN2) is an alkylating agent and sulfur mustard mimetic. Topical exposure to HN2 is associated with tissue blistering. Previous work in our laboratory has shown that ebselen (EB-1) possesses anti-vesicant, anti-inflammatory, anti-bacterial, anti-fungal, and cytoprotective properties, both in vivo and in vitro. We recently reported that ebselen oxide (EB-2), an analog of EB-1 with a tetravalent selenium atom, also possesses anti-bacterial and anti-fungal activity and confers cytoprotection against HN2 in vitro. The purpose of the present study was to determine the vesicant countermeasure potential of EB-2 using the mouse ear vesicant model (MEVM). Compared to control ears, mouse ears exposed to a single dose of HN2 (0.500 µmol/ear) showed an increase in wet weights, ear thickness, hyperplasia, vesication, and inflammatory cell infiltration after 24 h. Fluorescence microscopy of terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL)-stained sections showed that the occurrence of apoptosis extended from the epidermis of the HN2-treated side, all the way to the contralateral epidermis. In contrast, HN2-exposed ears treated topically with EB-2 at a test dose of 0.250 mg/ear showed a significant decrease in wet weight (12% less vs. HN2 alone), morphometric thickness (13% less vs. HN2 alone), and vesication. In addition, TUNEL staining revealed that HN2 ears treated with EB-2 (0.250 mg/ear) showed a decrease in apoptosis as compared to the HN2 group. EB-2 also reduced the abundance of matrix metalloproteinase-9 (MMP-9) in ear tissues exposed to HN2. Taken together, our study demonstrates that EB-2 is an efficacious countermeasure to HN2.


Assuntos
Azóis/farmacologia , Citoproteção , Irritantes/antagonistas & inibidores , Mecloretamina/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , Pele/efeitos dos fármacos , Alquilantes/toxicidade , Animais , Apoptose/efeitos dos fármacos , Orelha , Irritantes/toxicidade , Isoindóis , Mecloretamina/toxicidade , Camundongos
3.
Toxicol Lett ; 293: 140-148, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29535050

RESUMO

The skin is highly sensitive to the chemical warfare agent in mustard gas, sulfur mustard (SM) that initiates a delayed injury response characterized by erythema, inflammation and severe vesication (blistering). Although SM poses a continuing threat, used as recently as in the Syrian conflict, no mechanism-based antidotes against SM are available. Recent studies demonstrated that Transient Receptor Potential Ankyrin 1 (TRPA1), a chemosensory cation channel in sensory nerves innervating the skin, is activated by SM and 2-chloroethyl ethyl sulfide (CEES), an SM analog, in vitro, suggesting it may promote vesicant injury. Here, we investigated the effects of TRPA1 inhibitors, and an inhibitor of Calcitonin Gene Related Peptide (CGRP), a neurogenic inflammatory peptide released upon TRPA1 activation, in a CEES-induced mouse ear vesicant model (CEES-MEVM). TRPA1 inhibitors (HC-030031 and A-967079) and a CGRP inhibitor (MK-8825) reduced skin edema, pro-inflammatory cytokines (IL-1ß, CXCL1/KC), MMP-9, a protease implicated in skin damage, and improved histopathological outcomes. These findings suggest that TRPA1 and neurogenic inflammation contribute to the deleterious effects of vesicants in vivo, activated either directly by alkylation, or indirectly, by reactive intermediates or pro-inflammatory mediators. TRPA1 and CGRP inhibitors represent new leads that could be considered for validation and further development in other vesicant injury models.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/análogos & derivados , Dermatopatias/induzido quimicamente , Dermatopatias/prevenção & controle , Canal de Cátion TRPA1/antagonistas & inibidores , Acetanilidas/farmacologia , Animais , Biomarcadores/análise , Vesícula/patologia , Citocinas/biossíntese , Orelha Externa/patologia , Queratinócitos/efeitos dos fármacos , Masculino , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Gás de Mostarda/toxicidade , Purinas/farmacologia , Piridinas/farmacologia , Pele/patologia , Dermatopatias/patologia , Compostos de Espiro/farmacologia
4.
Interdiscip Toxicol ; 11(4): 255-266, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31762677

RESUMO

Mechlorethamine (HN2) is an alkylating agent and sulfur mustard gas mimetic which is also used in anticancer therapy. HN2 is associated with skin inflammation and blistering which can lead to secondary infections. The purpose of the present study was to investigate the time-dependent dermatotoxicity of HN2 using the mouse ear vesicant model (MEVM). To this end, our operational definition of dermatotoxicity included tissue responses to HN2 consistent with an increase in the wet weights of mouse ear punch biopsies, an increase in the morphometric thickness of H&E stained ear sections and histopathologic observations including tissue edema, inflammatory cell infiltration and vesication. The ears of male Swiss Webster mice were topically exposed to a single dose of HN2 (0.5 µmol/ear) or DMSO vehicle (5 µl/ear) or left untreated (naive). Mice were then euthanized at 15 min, 1, 2, 4, 8 or 24 hr following HN2 exposure. Compared to control ears, mouse ears exposed to HN2 at all time points showed an increase in wet weights, morphometric thickness, edema, inflammatory cell infiltration and signs of vesication. The incidence in tissue vesication sharply increased between 4 and 8 hr after exposure, revealing that tissue vesication is well established by 8 hr and remains elevated at 24 hr after exposure. It is noteworthy that, compared to control ears, mouse ears treated with DMSO vehicle alone also exhibited an increase in wet weights and morphometric thickness at 15 min, 1, 2 and 4 hr following treatment; however, these vehicle effects begin to subside after 4 hr. The results obtained here using the MEVM provide a more holistic understanding of the kinetics of vesication, and indicate that time points earlier than 24 hr may prove useful not only for investigating the complex mechanisms involved in vesication but also for assessing the effects of vesicant countermeasures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA