Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
J Ovarian Res ; 17(1): 161, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118097

RESUMO

Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.


Assuntos
Imunoconjugados , Mucinas , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Mucinas/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais
2.
Curr Issues Mol Biol ; 46(7): 6675-6689, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057040

RESUMO

Specific molecular and inflammatory endotypes have been identified for chronic respiratory disorders, including asthma and COPD (chronic obstructive pulmonary disease). These endotypes correspond with clinical aspects of disease, enabling targeted medicines to address certain pathophysiologic pathways, often referred to as "precision medicine". With respect to bronchiectasis, many comorbidities and underlying causes have been identified. Inflammatory endotypes have also been widely studied and reported. Additionally, several genes have been shown to affect disease progression. However, the lack of a clear classification has also hampered our understanding of the disease's natural course. The aim of this review is, thus, to summarize the current knowledge on biomarkers and actionable targets of this complex pathologic condition and to point out unmet needs, which are required in the design of effective diagnostic and therapeutic trials.

3.
Curr Protoc ; 4(7): e1100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984456

RESUMO

Mucin-domain glycoproteins are characterized by their high density of glycosylated serine and threonine residues, which complicates their analysis by mass spectrometry. The dense glycosylation renders the protein backbone inaccessible to workhorse proteases like trypsin, the vast heterogeneity of glycosylation often results in ion suppression from unmodified peptides, and search algorithms struggle to confidently analyze and site-localize O-glycosites. We have made a number of advances to address these challenges, rendering mucinomics possible for the first time. Here, we summarize these contributions and provide a detailed protocol for mass spectrometric analysis of mucin-domain glycoproteins. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Enrichment of mucin-domain glycoproteins Basic Protocol 2: Enzymatic digestion of mucin-domain glycoprotein(s) Basic Protocol 3: Mass spectrometry data collection for O-glycopeptides Basic Protocol 4: Mass spectrometry data analysis of O-glycopeptides.


Assuntos
Glicoproteínas , Espectrometria de Massas , Mucinas , Espectrometria de Massas/métodos , Mucinas/química , Mucinas/metabolismo , Mucinas/análise , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicoproteínas/análise , Glicosilação , Humanos , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo
4.
bioRxiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005468

RESUMO

Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide. Alternatively, electron-based methods are indispensable for O-glycosite localization. However, the presence of simultaneously N- and O-glycosylated peptides could suggest the necessity of electron-based fragmentation methods for N-glycoproteomics, which is not commonly performed. Thus, we quantified the prevalence of N- and O-glycopeptides in mucins and other glycoproteins. A much higher frequency of co-occupancy within mucins was detected whereas only a negligible occurrence occurred within non-mucin glycoproteins. This was demonstrated from analyses of recombinant and/or purified proteins, as well as more complex samples. Where co-occupancy occurred, O-glycosites were frequently localized to the Ser/Thr within the N-sequon. Additionally, we found that O-glycans in close proximity to the occupied Asn were predominantly unelaborated core 1 structures, while those further away were more extended. Overall, we demonstrate electron-based methods are required for robust site-specific analysis of mucins, wherein co-occupancy is more prevalent. Conversely, collisional methods are generally sufficient for analyses of other types of glycoproteins.

5.
ACS Infect Dis ; 10(8): 2540-2550, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38990078

RESUMO

Glycans play critical roles in the host-pathogen interactions leading to infection. However, we still understand very little about the dynamic nature of glycosylation in response to infection and its function in modulating host immunity. Many of the host proteins involved in immune defense are glycoproteins. Furthermore, the innate immune system recognizes glycans. The glycoform of a protein can impact proteolytic stability, receptor interactions, serum half-life, and other aspects. New, cutting-edge chemical biology tools are shedding light on the interplay between infection and the host glycome. In this review, we highlight new work on the importance of dynamic glycosylation of host proteins in the innate and adaptive immune pathways in response to infection. These include recent findings on altered glycoprofiles of mucins, complement components, and antibodies.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Polissacarídeos , Humanos , Glicosilação , Polissacarídeos/metabolismo , Polissacarídeos/química , Animais , Glicoproteínas/metabolismo , Imunidade Adaptativa , Infecções/imunologia
6.
J Texture Stud ; 55(4): e12851, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952153

RESUMO

Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted at γ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s at γ ̇ $$ \dot{\gamma} $$ = 20 s-1).


Assuntos
Tamanho da Partícula , Reologia , Saliva , Saliva/química , Humanos , Viscosidade , Conteúdo Gastrointestinal/química , Concentração de Íons de Hidrogênio , Suco Gástrico/química
7.
Cancers (Basel) ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893239

RESUMO

Introduction: Mucins play a pivotal role in epithelial carcinogenesis; however, their role remains elusive in ampulla of Vater (AoV) cancer, regardless of histological subtype. Therefore, we investigated the clinical significance of MUC1, MUC2, MUC5AC, and MUC6 expression in AoV cancer. Methods: Using samples from 68 patients with AoV cancer, we performed immunohistochemical staining for MUC1, MUC2, MUC5AC, and MUC6 using a tissue microarray. Subsequently, we analyzed their expression patterns in relation to clinicopathological parameters and patient outcomes. Results: Of the patients, 98.5% exhibited positive expression for MUC1, while MUC2, MUC5AC, and MUC6 were expressed in 44.1%, 47.1%, and 41.2% of the patients, respectively. Correlation analyses between mucin expression and clinicopathological factors revealed no significant associations, except between MUC5AC expression and N stage. Univariate analysis demonstrated significant associations between MUC5AC expression and overall survival (OS). Multivariate analysis further confirmed that MUC5AC expression was a significant predictor of OS, along with the N stage. However, MUC5AC expression was not meaningfully associated with recurrence-free survival (RFS). The patients positive for MUC5AC expression had a considerably shorter OS than those with negative expression. Conclusions: Our study provides insights into the clinical impact of mucins on AoV cancer, regardless of the histological subtype. Although MUC1 expression is universal, MUC5AC expression is a significant prognostic indicator that correlates with lymph node metastasis and poor OS. These results emphasize the possible utility of MUC5AC as a biomarker for extensive lymph node dissection and the prognostic evaluation of patients with AoV cancer.

8.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932019

RESUMO

MUC2 mucin, the primary gel-forming component of intestinal mucus, is well researched and a model of polymerisation and post-secretory organisation has been published previously. Recently, several significant developments have been made which either introduce new ideas or challenge previous theories. New ideas include an overhaul of the MUC2 C-terminal globular structure which is proposed to harbour several previously unobserved domains, and include a site for an extra intermolecular disulphide bridge dimer between the cysteine 4379 of adjacent MUC2 C-termini. MUC2 polymers are also now thought to be secreted attached to the epithelial surface of goblet cells in the small intestine and removed following secretion via a metalloprotease meprin ß-mediated cleavage of the von Willebrand D2 domain of the N-terminus. It remains unclear whether MUC2 forms intermolecular dimers, trimers, or both, at the N-termini during polymerisation, with several articles supporting either trimer or dimer formation. The presence of a firm inner mucus layer in the small intestine is similarly unclear. Considering this recent research, this review proposes an update to the previous model of MUC2 polymerisation and secretion, considers conflicting theories and data, and highlights the importance of this research to the understanding of MUC2 mucus layers in health and disease.

9.
FEBS J ; 291(15): 3539-3552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38708720

RESUMO

Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif. Since this is the consensus sequence for tryptophan C-mannosylation, mucin CysDs have been suggested to be targets for C-mannosyltransferases, but this has never been directly shown. Here, we recombinantly expressed human mucin CysDs in Chinese hamster ovary (CHO) cells and analyzed the C-mannosylation status. Mass spectrometric analysis revealed that the putative C-mannose site is not or only barely C-mannosylated. However, mutation of the adjacent cysteine residues enabled C-mannosylation to occur. In contrast to mucin CysDs, the homologous CysD of human cartilage intermediate layer protein 1 (CILP1) lacks these cysteine residues preceding the WxxW motif. We show that CILP1 CysD is C-mannosylated, but introducing a cysteine at the -2 position causes this modification to be lost. We thus conclude that the presence of cysteine residues prevents the modification of the WxxW motif in CysDs.


Assuntos
Cricetulus , Cisteína , Manose , Cisteína/metabolismo , Cisteína/genética , Cisteína/química , Humanos , Animais , Células CHO , Manose/metabolismo , Manose/química , Glicosilação , Mucinas/metabolismo , Mucinas/química , Mucinas/genética , Domínios Proteicos , Sequência de Aminoácidos , Motivos de Aminoácidos , Sequência Conservada , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química
10.
Heliyon ; 10(10): e31403, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803848

RESUMO

The main component of O-glycoproteins, mucin, is known to play important roles in physiological conditions and oncogenic processes, particularly correlated with poor prognosis in different carcinomas. Diffuse-type gastric cancer (DGC) has long been associated with genomic stability and unfavorable clinical outcomes. To investigate further, we obtained clinical information and the RNA-seq data of the TCGA-STAD cohort. Through the use of unsupervised clustering methods and GSEA, we identified two distinct clusters, characterized by higher and lower expression of MUC2 and MUC20, denoted as cluster 1 and cluster 2, respectively. Subsequently, employing CIBERSORT, it was determined that cluster 2 exhibited a higher tumor mutation burden (TMB) and a greater abundance of CD8+ T cells and activated CD4+ memory T cells, in addition to immune checkpoints (ICPs). On the other hand, cluster 1 showed a lower TIDE score estimation, indicating a higher probability of tumor immune escape. Furthermore, overexpression of MUC15 and MUC20 was confirmed through qPCR and Western blotting, and their specific roles in mediating the epithelial-mesenchymal transition (EMT) process of GC cells (SNU484 and Hs746t) were validated via CCK-8 assay and wound healing assay in vitro. These findings highlight the potential prognostic value of MUC20 and offer insights into the prospects of immunotherapy for DGC by targeting MUC20.

11.
Parasite Immunol ; 46(5): e13040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801355

RESUMO

Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.


Assuntos
Echinococcus granulosus , Ácido Fítico , Animais , Echinococcus granulosus/imunologia , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Equinococose/imunologia , Equinococose/parasitologia , Inflamação , Neutrófilos/imunologia , Mucinas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Eosinófilos/imunologia , Feminino , Larva/imunologia
12.
Metabolites ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786750

RESUMO

Gallbladder disorders encompass a spectrum from congenital anomalies to inflammatory and neoplastic conditions, frequently requiring surgical intervention. Epithelial abnormalities like adenoma and metaplasia have the potential to progress to carcinoma, emphasizing the importance of histopathological assessment for early detection of malignancy. Gallbladder cancer (GBC) may be incidentally discovered during cholecystectomy for presumed benign conditions, underscoring the need for a thorough examination. However, the lack of clarity regarding the molecular mechanisms of GBC has impeded diagnostic and therapeutic advancements. Timely detection is crucial due to GBC's aggressive nature and poor prognosis. Chronic inflammation plays a central role in carcinogenesis, causing DNA damage and oncogenic alterations due to persistent insults. Inflammatory cytokines and microRNAs are among the various mediators contributing to this process. Gallbladder calcifications, particularly stippled ones, may signal malignancy and warrant preemptive removal. Molecular pathways involving mutations in oncogenes and tumor suppressor genes drive GBC pathogenesis, with proposed sequences such as gallstone-induced inflammation leading to carcinoma formation. Understanding these mechanisms, alongside evaluating mucin characteristics and gene mutations, can deepen comprehension of GBC's pathophysiology. This, in turn, facilitates the identification of high-risk individuals and the development of improved treatment strategies, ultimately enhancing patient outcomes. Thus, in this review, our aim has been to underscore the primary mechanisms underlying the development of gallbladder dysplasia and neoplasia.

13.
Brain Behav Immun ; 119: 665-680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579936

RESUMO

Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.


Assuntos
Depressão , Disbiose , Microbioma Gastrointestinal , Estresse Psicológico , Animais , Masculino , Camundongos , Comportamento Animal/fisiologia , Depressão/metabolismo , Depressão/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Fator 4 Nuclear de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
14.
J Theor Biol ; 587: 111824, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38604595

RESUMO

The human gut microbiota relies on complex carbohydrates (glycans) for energy and growth, primarily dietary fiber and host-derived mucins. We introduce a mathematical model of a glycan generalist and a mucin specialist in a two-compartment chemostat model of the human colon. Our objective is to characterize the influence of dietary fiber and mucin supply on the abundance of mucin-degrading species within the gut ecosystem. Current mathematical gut reactor models that include the enzymatic degradation of glycans do not differentiate between glycan types and their degraders. The model we present distinguishes between a generalist that can degrade both dietary fiber and mucin, and a specialist species that can only degrade mucin. The integrity of the colonic mucus barrier is essential for overall human health and well-being, with the mucin specialist Akkermanisa muciniphila being associated with a healthy mucus layer. Competition, particularly between the specialist and generalists like Bacteroides thetaiotaomicron, may lead to mucus layer erosion, especially during periods of dietary fiber deprivation. Our model treats the colon as a gut reactor system, dividing it into two compartments that represent the lumen and the mucus of the gut, resulting in a complex system of ordinary differential equations with a large and uncertain parameter space. To understand the influence of model parameters on long-term behavior, we employ a random forest classifier, a supervised machine learning method. Additionally, a variance-based sensitivity analysis is utilized to determine the sensitivity of steady-state values to changes in model parameter inputs. By constructing this model, we can investigate the underlying mechanisms that control gut microbiota composition and function, free from confounding factors.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Modelos Biológicos , Mucinas , Muco , Mucinas/metabolismo , Fibras na Dieta/metabolismo , Humanos , Microbioma Gastrointestinal/fisiologia , Muco/metabolismo , Colo/metabolismo , Colo/microbiologia , Polissacarídeos/metabolismo
15.
Biomed Pharmacother ; 174: 116619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643541

RESUMO

Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Mucina-1 , Neoplasias , Humanos , Mucina-1/metabolismo , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Animais , Antígenos Glicosídicos Associados a Tumores/metabolismo , Antígenos Glicosídicos Associados a Tumores/imunologia , Glicosilação , Epitopos/imunologia
16.
Am J Reprod Immunol ; 91(3): e13832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462543

RESUMO

PROBLEM: Excisional surgery for cervical intraepithelial neoplasia is a risk factor for preterm birth in subsequent pregnancies. However, the underlying mechanisms of this association remain unclear. We previously showed that cervical MUC5B, a mucin protein, may be a barrier to ascending pathogens during pregnancy. We thus hypothesized that hyposecretion of cervical MUC5B is associated with preterm birth after cervical excisional surgery. METHOD OF STUDY: This prospective nested case-control study (Study 1) included pregnant women who had previously undergone cervical excisional surgery across 11 hospitals. We used proteomics to compare cervicovaginal fluid at 18-22 weeks of gestation between the preterm and term birth groups. In another case-control analysis (Study 2), we compared MUC5B expression in nonpregnant uterine tissues between 15 women with a history of cervical excisional surgery and 26 women without a history of cervical surgery. RESULTS: The abundance of MUC5B in cervicovaginal fluid was significantly decreased in the preterm birth group (fold change = 0.41, p = .035). Among the 480 quantified proteins, MUC5B had the second highest positive correlation with gestational age at delivery in the combined preterm and term groups. The cervicovaginal microbiome composition was not significantly different between the two groups. Cervical length was not correlated with gestational age at delivery (r = 0.18, p = .079). Histologically, the MUC5B-positive area in the nonpregnant cervix was significantly decreased in women with a history of cervical excisional surgery (0.85-fold, p = .048). The distribution of MUC5B-positive areas in the cervical tissues of 26 women without a history of cervical excisional surgery differed across individuals. CONCLUSIONS: This study suggests that the primary mechanism by which cervical excisional surgery causes preterm birth is the hyposecretion of MUC5B due to loss of the cervical glands.


Assuntos
Colo do Útero , Nascimento Prematuro , Feminino , Gravidez , Recém-Nascido , Humanos , Colo do Útero/cirurgia , Gestantes , Estudos de Casos e Controles , Estudos Prospectivos , Estudos Retrospectivos , Mucina-5B
17.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542124

RESUMO

Inflammation and mucus production are prevalent characteristics of chronic respiratory conditions, such as asthma and chronic chronic obstructive pulmonary disease (COPD). Biological co-factors, including bacteria, viruses, and fungi, may exacerbate these diseases by activating various pathways associated with airway diseases. An example is the fungus Pneumocystis, which is linked to severe COPD in human patients. Recent evidence has demonstrated that Pneumocystis significantly enhanced inflammation and mucus hypersecretion in a rat model of elastase-induced COPD. The present study specifically aims to investigate two additional aspects associated with the pathology induced by Pneumocystis infection: inflammation and collagen deposition around airways. To this end, the focus was to investigate the role of the IL-1ß pro-inflammatory pathway during Pneumocystis infection in COPD rats. Several airway pathology-related features, such as inflammation, mucus hypersecretion, and fibrosis, were evaluated using histological and molecular techniques. COPD animals infected with Pneumocystis exhibited elevated inflammation levels, including a synergistic increase in IL-1ß and Cox-2. Furthermore, protein levels of the IL-1ß-dependent transcription factor cAMP response element-binding (CREB) showed a synergistic elevation of their phosphorylated version in the lungs of COPD animals infected with Pneumocystis, while mucus levels were notably higher in the airways of COPD-infected animals. Interestingly, a CREB responsive element (CRE) was identified in the Muc5b promoter. The presence of CREB in the Muc5b promoter was synergistically increased in COPD animals infected with Pneumocystis compared to other experimental groups. Finally, an increment of deposited collagen was identified surrounding the airways of COPD animals infected with Pneumocystis compared with the other experimental animal groups and correlated with the increase of Tgfß1 mRNA levels. These findings emphasize the role of Pneumocystis as a potential biological co-factor in chronic respiratory diseases like COPD or asthma, warranting new perspectives in the treatment of chronic respiratory diseases.


Assuntos
Asma , Pneumocystis , Pneumonia por Pneumocystis , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Asma/metabolismo , Muco/metabolismo , Inflamação/metabolismo , Colágeno/metabolismo
18.
Respir Res ; 25(1): 117, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454475

RESUMO

Heart surgery may be complicated by acute lung injury and adult respiratory distress syndrome. Expression and release of mucins MUC5AC and MUC5B in the lungs has been reported to be increased in acute lung injury. The aim of our study was to [1] investigate the perioperative changes of MUC5AC, MUC5B and other biomarkers in mini-bronchoalveolar lavage (minBAL), and [2] relate these to clinical outcomes after cardiac surgery. In this prospective cohort study in 49 adult cardiac surgery patients pre- and post-surgery non-fiberscopic miniBAL fluids were analysed for MUC5AC, MUC5B, IL-8, human neutrophil elastase, and neutrophils. All measured biomarkers increased after surgery. Perioperative MUC5AC-change showed a significant negative association with postoperative P/F ratio (p = 0.018), and a positive association with ICU stay (p = 0.027). In conclusion, development of lung injury after cardiac surgery and prolonged ICU stay are associated with an early increase of MUC5AC as detected in mini-BAL.


Assuntos
Lesão Pulmonar Aguda , Procedimentos Cirúrgicos Cardíacos , Adulto , Humanos , Líquido da Lavagem Broncoalveolar , Estudos Prospectivos , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Biomarcadores/análise , Mucina-5AC/metabolismo
19.
Methods Mol Biol ; 2763: 51-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347399

RESUMO

Membrane-bound mucins constitute a large portion of the periciliary layer of lung epithelial surfaces, and thus play an important role in many aspects of innate defense. The biophysical and biochemical properties of the membrane-bound mucins have important implications for mucociliary clearance, viral penetration, and potential therapeutics delivered to the airway surface. Hence, isolating them and determining these properties is important in understanding airways disease and ultimately in developing treatments. Here, we describe a method using isopycnic centrifugation to enrich and isolate shed membrane-bound mucins from the washings of human bronchial epithelial cell cultures.


Assuntos
Células Epiteliais , Mucinas , Humanos , Mucinas/metabolismo , Células Epiteliais/metabolismo , Membranas/metabolismo , Pulmão/metabolismo
20.
Front Immunol ; 15: 1356913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361923

RESUMO

The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.


Assuntos
Mucina-1 , Neoplasias , Animais , Mucina-1/metabolismo , Antígeno Ca-125/metabolismo , Mucinas , Neoplasias/tratamento farmacológico , Imunidade , Mamíferos/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA