Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Eur Heart J ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217456

RESUMO

BACKGROUND: and aims: Cardiogenic shock (CS) remains the primary cause of in-hospital death after acute coronary syndromes (ACS), with its plateauing mortality rates approaching 50%. To test novel interventions, personalized risk prediction is essential. The ORBI (Observatoire Régional Breton sur l'Infarctus) score represents the first-of-its-kind risk score to predict in-hospital CS in ACS patients undergoing percutaneous coronary intervention (PCI). However, its sex-specific performance remains unknown, and refined risk prediction strategies are warranted. METHODS: This multinational study included a total of 53 537 ACS patients without CS on admission undergoing PCI. Following sex-specific evaluation of ORBI, regression and machine-learning models were used for variable selection and risk prediction. By combining best-performing models with highest-ranked predictors, SEX-SHOCK was developed, and internally and externally validated. RESULTS: The ORBI score showed lower discriminative performance for the prediction of CS in females than males in Swiss (AUC [95% CI]: 0.78 [0.76-0.81] vs. 0.81 [0.79-0.83]; p=0.048) and French ACS patients (0.77 [0.74-0.81] vs. 0.84 [0.81-0.86]; p=0.002). The newly developed SEX-SHOCK score, now incorporating ST-segment elevation, creatinine, C-reactive protein, and left ventricular ejection fraction, outperformed ORBI in both sexes (females: 0.81 [0.78-0.83]; males: 0.83 [0.82-0.85]; p<0.001), which prevailed following internal and external validation in RICO (females: 0.82 [0.79-0.85]; males: 0.88 [0.86-0.89]; p<0.001) and SPUM-ACS (females: 0.83 [0.77-0.90], p=0.004; males: 0.83 [0.80-0.87], p=0.001). CONCLUSIONS: The ORBI score showed modest sex-specific performance. The novel SEX-SHOCK score provides superior performance in females and males across the entire spectrum of ACS, thus providing a basis for future interventional trials and contemporary ACS management.

2.
Skin Res Technol ; 30(9): e70040, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39221858

RESUMO

BACKGROUND: Skin cancer is one of the highly occurring diseases in human life. Early detection and treatment are the prime and necessary points to reduce the malignancy of infections. Deep learning techniques are supplementary tools to assist clinical experts in detecting and localizing skin lesions. Vision transformers (ViT) based on image segmentation classification using multiple classes provide fairly accurate detection and are gaining more popularity due to legitimate multiclass prediction capabilities. MATERIALS AND METHODS: In this research, we propose a new ViT Gradient-Weighted Class Activation Mapping (GradCAM) based architecture named ViT-GradCAM for detecting and classifying skin lesions by spreading ratio on the lesion's surface area. The proposed system is trained and validated using a HAM 10000 dataset by studying seven skin lesions. The database comprises 10 015 dermatoscopic images of varied sizes. The data preprocessing and data augmentation techniques are applied to overcome the class imbalance issues and improve the model's performance. RESULT: The proposed algorithm is based on ViT models that classify the dermatoscopic images into seven classes with an accuracy of 97.28%, precision of 98.51, recall of 95.2%, and an F1 score of 94.6, respectively. The proposed ViT-GradCAM obtains better and more accurate detection and classification than other state-of-the-art deep learning-based skin lesion detection models. The architecture of ViT-GradCAM is extensively visualized to highlight the actual pixels in essential regions associated with skin-specific pathologies. CONCLUSION: This research proposes an alternate solution to overcome the challenges of detecting and classifying skin lesions using ViTs and GradCAM, which play a significant role in detecting and classifying skin lesions accurately rather than relying solely on deep learning models.


Assuntos
Algoritmos , Aprendizado Profundo , Dermoscopia , Neoplasias Cutâneas , Humanos , Dermoscopia/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/patologia , Interpretação de Imagem Assistida por Computador/métodos , Bases de Dados Factuais , Pele/diagnóstico por imagem , Pele/patologia
3.
Front Psychol ; 15: 1425471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144589

RESUMO

Objective: This study aims to precisely model the nonlinear relationship between university students' literature reading preferences (LRP) and their levels of anxiety and depression using a multilayer perceptron (MLP) to identify reading-related risk factors affecting anxiety and depression among university students. Methods: In this cross-sectional study, an internet-based questionnaire was conducted among 2,092 undergraduate students (aged 18-22, 62.7% female, from seven provinces in China). Participants completed a customized questionnaire on their LRP, followed by standardized assessments of anxiety and depression using the Generalized Anxiety Disorder 7-item Scale and the Beck Depression Inventory, respectively. An MLP with residual connections was employed to establish the nonlinear relationship between LRP and anxiety and depression. Results: The MLP model achieved an average accuracy of 86.8% for predicting non-anxious individuals and 81.4% for anxious individuals. In the case of depression, the model's accuracy was 90.1% for non-depressed individuals and 84.1% for those with depression. SHAP value analysis identified "Tense/Suspenseful-Emotional Tone," "War and Peace-Thematic Content," and "Infrequent Reading-Reading Habits" as the top contributors to anxiety prediction accuracy. Similarly, "Sad-Emotional Tone Preference," "Emotional Depictions-Thematic Content," and "Thought-Provoking-Emotional Tone" were the primary contributors to depression prediction accuracy. Conclusion: The MLP accurately models the nonlinear relationship between LRP and mental health in university students, indicating the significance of specific reading preferences as risk factors. The study underscores the importance of literature emotional tone and themes in mental health. LRP should be integrated into psychological assessments to help prevent anxiety and depression among university students.

4.
J Cell Biochem ; : e30642, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164870

RESUMO

The Type III secretion effectors (T3SEs) are bacterial proteins synthesized by Gram-negative pathogens and delivered into host cells via the Type III secretion system (T3SS). These effectors usually play a pivotal role in the interactions between bacteria and hosts. Hence, the precise identification of T3SEs aids researchers in exploring the pathogenic mechanisms of bacterial infections. Since the diversity and complexity of T3SE sequences often make traditional experimental methods time-consuming, it is imperative to explore more efficient and convenient computational approaches for T3SE prediction. Inspired by the promising potential exhibited by pre-trained language models in protein recognition tasks, we proposed a method called PLM-T3SE that utilizes protein language models (PLMs) for effective recognition of T3SEs. First, we utilized PLM embeddings and evolutionary features from the position-specific scoring matrix (PSSM) profiles to transform protein sequences into fixed-length vectors for model training. Second, we employed the extreme gradient boosting (XGBoost) algorithm to rank these features based on their importance. Finally, a MLP neural network model was used to predict T3SEs based on the selected optimal feature set. Experimental results from the cross-validation and independent test demonstrated that our model exhibited superior performance compared to the existing models. Specifically, our model achieved an accuracy of 98.1%, which is 1.8%-42.4% higher than the state-of-the-art predictors based on the same independent data set test. These findings highlight the superiority of the PLM-T3SE and the remarkable characterization ability of PLM embeddings for T3SE prediction.

5.
Curr Top Med Chem ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39171594

RESUMO

BACKGROUND: Cancers are complex multi-genetic diseases that should be tackled in multi-target drug discovery scenarios. Computational methods are of great importance to accelerate the discovery of multi-target anticancer agents. Here, we employed a ligand-based approach by combining a perturbation-theory machine learning model derived from an ensemble of multilayer perceptron networks (PTML-EL-MLP) with the Fragment-Based Topological Design (FBTD) approach to rationally design and predict triple-target inhibitors against the cancerrelated proteins named Tropomyosin Receptor Kinase A (TRKA), poly[ADP-ribose] polymerase 1 (PARP-1), and Insulin-like Growth Factor 1 Receptor (IGF1R). METHODS: We extracted the chemical and biological data from ChEMBL. We applied the Box- Jenkins approach to generate multi-label topological indices and subsequently created the PTML-EL-MLP model. RESULTS: Our PTML-EL-MLP model exhibited an accuracy of around 80%. The application FBTD permitted the physicochemical and structural interpretation of the PTML-EL-MLP model, thus enabling a) the chemistry-driven analysis of different molecular fragments with a positive influence on the multi-target activity and b) the use of those favorable fragments as building blocks to virtually design four new drug-like molecules. The designed molecules were predicted as triple-target inhibitors against the aforementioned cancer-related proteins. CONCLUSION: Our study envisages the capabilities of combining PTML modeling with FBTD for the generation of new chemical diversity for multi-target drug discovery in oncology research and beyond.

6.
Entropy (Basel) ; 26(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39202084

RESUMO

Addressing the issues of prolonged training times and low recognition rates in large model applications, this paper proposes a weight training method based on entropy gain for weight initialization and dynamic adjustment of the learning rate using the multilayer perceptron (MLP) model as an example. Initially, entropy gain was used to replace random initial values for weight initialization. Subsequently, an incremental learning rate strategy was employed for weight updates. The model was trained and validated using the MNIST handwritten digit dataset. The experimental results showed that, compared to random initialization, the proposed initialization method improves training effectiveness by 39.8% and increases the maximum recognition accuracy by 8.9%, demonstrating the feasibility of this method in large model applications.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124917, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094267

RESUMO

To improve prediction performance and reduce artifacts in Raman spectra, we developed an eXtreme Gradient Boosting (XGBoost) preprocessing method to preprocess the Raman spectra of glucose, glycerol and ethanol mixtures. To ensure the robustness and reliability of the XGBoost preprocessing method, an X-LR model (which combined XGBoost preprocessing and a linear regression (LR) model) and a X-MLP model (which combined XGBoost preprocessing and a multilayer perceptron (MLP) model) were developed. These two models were used to quantitatively analyze the concentrations of glucose, glycerol and ethanol in the Raman spectra of mixed solutions. The proportion map of hyperparameters was firstly used to narrow down the search range of hyperparameters in the X-LR and the X-MLP models. Then the correlation coefficients (R2), root mean square of calibration (RMSEC), and root mean square error of prediction (RMSEP) were used to evaluate the models' performance. Experimental results indicated that the XGBoost preprocessing method achieved higher accuracy and generalization capability, with better performance than those of other preprocessing methods for both LR and MLP models.

8.
J Environ Manage ; 368: 122128, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126846

RESUMO

The number of cyanobacterial harmful algal blooms (cyanoHABs) has increased, leading to the widespread development of prediction models for cyanoHABs. Although bacteria interact closely with cyanobacteria and directly affect cyanoHABs occurrence, related modeling studies have rarely utilized microbial community data compared to environmental data such as water quality. In this study, we built a machine learning model, the multilayer perceptron (MLP), for the prediction of Microcystis dynamics using both bacterial community and weekly water quality data from the Daechung Reservoir and Nakdong River, South Korea. The modeling performance, indicated by the R2 value, improved to 0.97 in the model combining bacterial community data with environmental factors, compared to 0.78 in the model using only environmental factors. This underscores the importance of microbial communities in cyanoHABs prediction. Through the post-hoc analysis of the MLP models, we revealed that nitrogen sources played a more critical role than phosphorus sources in Microcystis blooms, whereas the bacterial amplicon sequence variants did not have significant differences in their contribution to each other. Similar to the MLP model results, bacterial data also had higher predictability in multiple linear regression (MLR) than environmental data. In both the MLP and MLR models, Microscillaceae showed the strongest association with Microcystis. This modeling approach provides a better understanding of the interactions between bacteria and cyanoHABs, facilitating the development of more accurate and reliable models for cyanoHABs prediction using ambient bacterial data.


Assuntos
Microcystis , Proliferação Nociva de Algas , República da Coreia , Qualidade da Água , Cianobactérias/genética
9.
BMC Infect Dis ; 24(1): 875, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198742

RESUMO

BACKGROUND: Pulmonary tuberculosis (PTB) is a prevalent chronic disease associated with a significant economic burden on patients. Using machine learning to predict hospitalization costs can allocate medical resources effectively and optimize the cost structure rationally, so as to control the hospitalization costs of patients better. METHODS: This research analyzed data (2020-2022) from a Kashgar pulmonary hospital's information system, involving 9570 eligible PTB patients. SPSS 26.0 was used for multiple regression analysis, while Python 3.7 was used for random forest regression (RFR) and MLP. The training set included data from 2020 and 2021, while the test set included data from 2022. The models predicted seven various costs related to PTB patients, including diagnostic cost, medical service cost, material cost, treatment cost, drug cost, other cost, and total hospitalization cost. The model's predictive performance was evaluated using R-square (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) metrics. RESULTS: Among the 9570 PTB patients included in the study, the median and quartile of total hospitalization cost were 13,150.45 (9891.34, 19,648.48) yuan. Nine factors, including age, marital status, admission condition, length of hospital stay, initial treatment, presence of other diseases, transfer, drug resistance, and admission department, significantly influenced hospitalization costs for PTB patients. Overall, MLP demonstrated superior performance in most cost predictions, outperforming RFR and multiple regression; The performance of RFR is between MLP and multiple regression; The predictive performance of multiple regression is the lowest, but it shows the best results for Other costs. CONCLUSION: The MLP can effectively leverage patient information and accurately predict various hospitalization costs, achieving a rationalized structure of hospitalization costs by adjusting higher-cost inpatient items and balancing different cost categories. The insights of this predictive model also hold relevance for research in other medical conditions.


Assuntos
Hospitalização , Aprendizado de Máquina , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/economia , Tuberculose Pulmonar/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Hospitalização/economia , Adulto , Idoso , Custos Hospitalares/estatística & dados numéricos , Tempo de Internação/economia , Adulto Jovem
10.
Transl Oncol ; 47: 102050, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981245

RESUMO

PURPOSE: Development and validation of a radiomics model for predicting occult locally advanced esophageal squamous cell carcinoma (LA-ESCC) on computed tomography (CT) radiomic features before implementation of treatment. METHODS: The study retrospectively collected 574 patients with esophageal squamous cell carcinoma (ESCC) from two medical centers, which were divided into three cohorts for training, internal and external validation. After delineating volume of interest (VOI), radiomics features were extracted and subjected to feature selection using three robust methods. Subsequently, 10 machine learning models were constructed, among which the optimal model was utilized to establish a radiomics signature. Furthermore, a predictive nomogram incorporating both clinical and radiomics signatures was developed. The performance of these models was evaluated through receiver operating characteristic curves, calibration curves, decision curve analysis as well as measures including accuracy, sensitivity, and specificity. RESULTS: A total of 19 radiomics features were selected. The multilayer perceptron (MLP), which was found to be optimal, achieved an AUC of 0.919, 0.864 and 0.882 in the training, internal and external validation cohorts, respectively. Similarly, MLP showed good accuracy in distinguish occult LA-ESCC in subgroup of cT1-2N0M0 diagnosed by clinicians with 0.803 and 0.789 in two validation cohorts respectively. By incorporating the radiomics signature with clinical signature, a predictive nomogram demonstrated superior prediction performance with an AUC of 0.877 and accuracy of 0.85 in external validation cohort. CONCLUSION: The radiomics and machine learning model can offers improved accuracy in prediction of occult LA-ESCC, providing valuable assistance to clinicians when choosing treatment plans.

11.
Environ Monit Assess ; 196(8): 759, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046576

RESUMO

This study uses artificial neural networks (ANNs) to examine the intricate relationship between air pollutants, meteorological factors, and respiratory disorders. The study investigates the correlation between hospital admissions for respiratory diseases and the levels of PM10 and SO2 pollutants, as well as local meteorological conditions, using data from 2017 to 2019. The objective of this study is to clarify the impact of air pollution on the well-being of the general population, specifically focusing on respiratory ailments. An ANN called a multilayer perceptron (MLP) was used. The network was trained using the Levenberg-Marquardt (LM) backpropagation algorithm. The data revealed a substantial increase in hospital admissions for upper respiratory tract diseases, amounting to a total of 11,746 cases. There were clear seasonal fluctuations, with fall having the highest number of cases of bronchitis (N = 181), sinusitis (N = 83), and upper respiratory infections (N = 194). The study also found demographic differences, with females and people aged 18 to 65 years having greater admission rates. The performance of the ANN model, measured using R2 values, demonstrated a high level of predictive accuracy. Specifically, the R2 value was 0.91675 during training, 0.99182 during testing, and 0.95287 for validating the prediction of asthma. The comparative analysis revealed that the ANN-MLP model provided the most optimal result. The results emphasize the effectiveness of ANNs in representing the complex relationships between air quality, climatic conditions, and respiratory health. The results offer crucial insights for formulating focused healthcare policies and treatments to alleviate the detrimental impact of air pollution and meteorological factors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hospitalização , Redes Neurais de Computação , Humanos , Poluição do Ar/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Adolescente , Poluentes Atmosféricos/análise , Adulto Jovem , Feminino , Idoso , Masculino , Hospitalização/estatística & dados numéricos , Doenças Respiratórias/epidemiologia , Conceitos Meteorológicos , Material Particulado/análise , Dióxido de Enxofre/análise , Criança , Monitoramento Ambiental/métodos , Pré-Escolar , Infecções Respiratórias/epidemiologia
12.
Accid Anal Prev ; 206: 107695, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972258

RESUMO

Rear-end (RE) crashes are notably prevalent and pose a substantial risk on freeways. This paper explores the correlation between speed difference among the following and leading vehicles (Δν) and RE crash risk. Three joint models, comprising both uncorrelated and correlated joint random-parameters bivariate probit (RPBP) approaches (statistical methods) and a cross-stitch multilayer perceptron (CS-MLP) network (a data-driven method), were estimated and compared against three separate models: Support Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost), and MLP networks (all data-driven methods). Data on 15,980 two-vehicle RE crashes were collected over a two-year period, from January 1, 2021, to December 31, 2022, considering two possible levels of injury severity: no injury and injury/fatality for both drivers of following and leading vehicles. The comparative performance analysis demonstrates the superior predictive capability of the CS-MLP network over the uncorrelated/correlated joint RPBP model, SVM, XGBoost, and MLP networks in terms of recall, F-1 Score, and AUC. Significantly, numerous shared variables influence the injury severity outcomes for the following and leading vehicles across both statistical and data-driven approaches. Among these factors, the following vehicle (a truck) and the leading vehicle (a passenger car) demonstrate contrasting effects on the injury severity outcomes for both vehicles. Furthermore, the SHapley Additive exPlanations (SHAP) values from the CS-MLP network visually show the relationship between Δν and injury severity, revealing non-linear trends unlike the average effects shown by statistical methods. They indicate that the least injury outcomes for both following and leading vehicles occurs at a Δν of 0 to 10 mph, matching observed patterns in RE crash data. Additionally, a marked variation in the trend of SHAP values for the two vehicles is noted as the speed difference increases. Therefore, the findings affirm the superior performance of joint model development and substantiate the non-linear impacts of speed difference on injury outcomes. The adoption of dynamic speed control measures is recommended to mitigate the injury outcomes involved in two-vehicle RE crashes.


Assuntos
Acidentes de Trânsito , Modelos Estatísticos , Máquina de Vetores de Suporte , Humanos , Acidentes de Trânsito/estatística & dados numéricos , Redes Neurais de Computação , Ferimentos e Lesões/epidemiologia , Ferimentos e Lesões/etiologia , Índices de Gravidade do Trauma
13.
Chemosphere ; 363: 142757, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969212

RESUMO

In-situ remediation of total petroleum hydrocarbon (TPH) contaminated soils via Fenton oxidation is a promising approach. However, determining the proper injection amount of H2O2 and Fe source over the Fenton reaction in the complex geological conditions for in-situ TPH soil remediation remains a daunting challenge. Herein, we introduced a practical and novel approach using soft computational models, a multilayer perception artificial neural network (MPLNN), for predicting the TPH removal performance. In this study, we conducted 48 sets of TPH removal experiments using Fenton oxidation to determine the TPH removal performance of a wide range of different ground conditions and generated 336 data points. As a result, a negative Pearson correlation coefficient was obtained in the Fe injection mass and the natural presence of Fe mineral in the soil, indicating that the excess of Fe could significantly retarded the TPH removal performance in the Fenton reaction. In addition, the MPLNN model with 6-6-1 training using Scaled conjugate gradient backpropagation (SCG) with tangent sigmoid as the transfer function demonstrated a high accuracy for TPH removal prediction with the correlation determination of 0.974 and mean square error value of 0.0259. The optimized MPLNN model achieved less than 20% error for predicting TPH removal performance in actual TPH-contaminated soil via Fenton oxidation. Hence, the proposed MPLNN can be useful in improving the Fenton oxidation of TPH removal performance in-situ soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Peróxido de Hidrogênio , Ferro , Redes Neurais de Computação , Oxirredução , Petróleo , Poluentes do Solo , Solo , Poluentes do Solo/química , Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Ferro/química , Solo/química , Hidrocarbonetos/química
14.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066059

RESUMO

A technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of C/N0 values, with a realistic dataset constituted by the synthetic noisy outputs of a 2D grid of correlators associated with different Doppler frequencies and code delays (time-domain dataset). Multipath-disturbed signals are generated in agreement with the various scenarios encompassed by the adopted multipath model. It was found that pre-processing the outputs of the correlators grid with the two-dimensional Discrete Fourier Transform (frequency-domain dataset) enables the CNN to improve the accuracy relative to the time-domain dataset. Depending on the kind of CNN outputs, two strategies can then be devised to solve the equation of navigation: either remove the disturbed signal from the equation (hard decision) or process the pseudoranges with a weighted least-squares algorithm, where the entries of the weighting matrix are computed using the analog outputs of the neural network (soft decision).

15.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000984

RESUMO

(1) Background: This study aims to investigate the correlation between heart rate variability (HRV) during exercise and recovery periods and the levels of anxiety and depression among college students. Additionally, the study assesses the accuracy of a multilayer perceptron-based HRV analysis in predicting these emotional states. (2) Methods: A total of 845 healthy college students, aged between 18 and 22, participated in the study. Participants completed self-assessment scales for anxiety and depression (SAS and PHQ-9). HRV data were collected during exercise and for a 5-min period post-exercise. The multilayer perceptron neural network model, which included several branches with identical configurations, was employed for data processing. (3) Results: Through a 5-fold cross-validation approach, the average accuracy of HRV in predicting anxiety levels was 89.3% for no anxiety, 83.6% for mild anxiety, and 74.9% for moderate to severe anxiety. For depression levels, the average accuracy was 90.1% for no depression, 84.2% for mild depression, and 82.1% for moderate to severe depression. The predictive R-squared values for anxiety and depression scores were 0.62 and 0.41, respectively. (4) Conclusions: The study demonstrated that HRV during exercise and recovery in college students can effectively predict levels of anxiety and depression. However, the accuracy of score prediction requires further improvement. HRV related to exercise can serve as a non-invasive biomarker for assessing psychological health.


Assuntos
Ansiedade , Depressão , Exercício Físico , Frequência Cardíaca , Redes Neurais de Computação , Estudantes , Dispositivos Eletrônicos Vestíveis , Humanos , Frequência Cardíaca/fisiologia , Ansiedade/fisiopatologia , Ansiedade/diagnóstico , Exercício Físico/fisiologia , Estudantes/psicologia , Masculino , Depressão/fisiopatologia , Depressão/diagnóstico , Adulto Jovem , Feminino , Adolescente , Universidades , Adulto
16.
Front Med (Lausanne) ; 11: 1397648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841581

RESUMO

For cancer therapy, the focus is now on targeting the chemotherapy drugs to cancer cells without damaging other normal cells. The new materials based on bio-compatible magnetic carriers would be useful for targeted cancer therapy, however understanding their effectiveness should be done. This paper presents a comprehensive analysis of a dataset containing variables x(m), y(m), and U(m/s), where U represents velocity of blood through vessel containing ferrofluid. The effect of external magnetic field on the fluid flow is investigated using a hybrid modeling. The primary aim of this research endeavor was to construct precise and dependable predictive models for velocity, utilizing the provided input variables. Several base models, including K-nearest neighbors (KNN), decision tree (DT), and multilayer perceptron (MLP), were trained and evaluated. Additionally, an ensemble model called AdaBoost was implemented to further enhance the predictive performance. The hyper-parameter optimization technique, specifically the BAT optimization algorithm, was employed to fine-tune the models. The results obtained from the experiments demonstrated the effectiveness of the proposed approach. The combination of the AdaBoost algorithm and the decision tree model yielded a highly impressive score of 0.99783 in terms of R2, indicating a strong predictive performance. Additionally, the model exhibited a low error rate, as evidenced by the root mean square error (RMSE) of 5.2893 × 10-3. Similarly, the AdaBoost-KNN model exhibited a high score of 0.98524 using R2 metric, with an RMSE of 1.3291 × 10-2. Furthermore, the AdaBoost-MLP model obtained a satisfactory R2 score of 0.99603, accompanied by an RMSE of 7.1369 × 10-3.

17.
Toxics ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922065

RESUMO

Drug-induced liver injury (DILI) poses a significant challenge for the pharmaceutical industry and regulatory bodies. Despite extensive toxicological research aimed at mitigating DILI risk, the effectiveness of these techniques in predicting DILI in humans remains limited. Consequently, researchers have explored novel approaches and procedures to enhance the accuracy of DILI risk prediction for drug candidates under development. In this study, we leveraged a large human dataset to develop machine learning models for assessing DILI risk. The performance of these prediction models was rigorously evaluated using a 10-fold cross-validation approach and an external test set. Notably, the random forest (RF) and multilayer perceptron (MLP) models emerged as the most effective in predicting DILI. During cross-validation, RF achieved an average prediction accuracy of 0.631, while MLP achieved the highest Matthews Correlation Coefficient (MCC) of 0.245. To validate the models externally, we applied them to a set of drug candidates that had failed in clinical development due to hepatotoxicity. Both RF and MLP accurately predicted the toxic drug candidates in this external validation. Our findings suggest that in silico machine learning approaches hold promise for identifying DILI liabilities associated with drug candidates during development.

18.
Sci Rep ; 14(1): 13953, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886458

RESUMO

Predicting postpartum hemorrhage (PPH) before delivery is crucial for enhancing patient outcomes, enabling timely transfer and implementation of prophylactic therapies. We attempted to utilize machine learning (ML) using basic pre-labor clinical data and laboratory measurements to predict postpartum Hemoglobin (Hb) in non-complicated singleton pregnancies. The local databases of two academic care centers on patient delivery were incorporated into the current study. Patients with preexisting coagulopathy, traumatic cases, and allogenic blood transfusion were excluded from all analyses. The association of pre-delivery variables with 24-h post-delivery hemoglobin level was evaluated using feature selection with Elastic Net regression and Random Forest algorithms. A suite of ML algorithms was employed to predict post-delivery Hb levels. Out of 2051 pregnant women, 1974 were included in the final analysis. After data pre-processing and redundant variable removal, the top predictors selected via feature selection for predicting post-delivery Hb were parity (B: 0.09 [0.05-0.12]), gestational age, pre-delivery hemoglobin (B:0.83 [0.80-0.85]) and fibrinogen levels (B:0.01 [0.01-0.01]), and pre-labor platelet count (B*1000: 0.77 [0.30-1.23]). Among the trained algorithms, artificial neural network provided the most accurate model (Root mean squared error: 0.62), which was subsequently deployed as a web-based calculator: https://predictivecalculators.shinyapps.io/ANN-HB . The current study shows that ML models could be utilized as accurate predictors of indirect measures of PPH and can be readily incorporated into healthcare systems. Further studies with heterogenous population-based samples may further improve the generalizability of these models.


Assuntos
Algoritmos , Hemoglobinas , Aprendizado de Máquina , Humanos , Feminino , Hemoglobinas/análise , Hemoglobinas/metabolismo , Gravidez , Adulto , Hemorragia Pós-Parto/sangue , Período Pós-Parto/sangue , Parto Obstétrico
19.
J Environ Manage ; 359: 121018, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714033

RESUMO

The estimation and prediction of the amount of sediment accumulated in reservoirs are imperative for sustainable reservoir sedimentation planning and management and to minimize reservoir storage capacity loss. The main objective of this study was to estimate and predict reservoir sedimentation using multilayer perceptron-artificial neural network (MLP-ANN) and random forest regressor (RFR) models in the Gibe-III reservoir, Omo-Gibe River basin. The hydrological and meteorological parameters considered for the estimation and prediction of reservoir sedimentation include annual rainfall, annual water inflow, minimum reservoir level, and reservoir storage capacity. The MLP-ANN and RFR models were employed to estimate and predict the amount of sediment accumulated in the Gibe-III reservoir using time series data from 2014 to 2022. ANN-architecture N4-100-100-1 with a coefficient of determination (R2) of 0.97 for the (80, 20) train-test approach was chosen because it showed better performance both in training and testing (validation) the model. The MLP-ANN and RFR models' performance evaluation was conducted using MAE, MSE, RMSE, and R2. The models' evaluation result revealed that the MLP-ANN model outperformed the RFR model. Regarding the train data simulation of MLP-ANN and RFR shown R2 (0.99) and RMSE (0.77); and R2 (0.97) and RMSE (1.80), respectively. On the other hand, the test data simulation of MLP-ANN and RFR demonstrated R2 (0.98) and RMSE (1.32); and R2 (0.96) and RMSE (2.64), respectively. The MLP-ANN model simulation output indicates that the amount of sediment accumulation in the Gibe-III reservoir will increase in the future, reaching 110 MT in 2030-2031, 130 MT in 2050-2051, and above 137 MTin 2071-2072.


Assuntos
Redes Neurais de Computação , Rios , Etiópia , Rios/química , Sedimentos Geológicos/análise , Hidrologia , Modelos Teóricos , Monitoramento Ambiental/métodos
20.
Metabolites ; 14(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786743

RESUMO

A major limitation of most metabolomics datasets is the sparsity of pathway annotations for detected metabolites. It is common for less than half of the identified metabolites in these datasets to have a known metabolic pathway involvement. Trying to address this limitation, machine learning models have been developed to predict the association of a metabolite with a "pathway category", as defined by a metabolic knowledge base like KEGG. Past models were implemented as a single binary classifier specific to a single pathway category, requiring a set of binary classifiers for generating the predictions for multiple pathway categories. This past approach multiplied the computational resources necessary for training while diluting the positive entries in the gold standard datasets needed for training. To address these limitations, we propose a generalization of the metabolic pathway prediction problem using a single binary classifier that accepts the features both representing a metabolite and representing a pathway category and then predicts whether the given metabolite is involved in the corresponding pathway category. We demonstrate that this metabolite-pathway features pair approach not only outperforms the combined performance of training separate binary classifiers but demonstrates an order of magnitude improvement in robustness: a Matthews correlation coefficient of 0.784 ± 0.013 versus 0.768 ± 0.154.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA