Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Clin Transl Med ; 14(7): e1777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039912

RESUMO

N-methyladenosine (m6A) represents a prevalent RNA modification observed in colorectal cancer. Despite its abundance, the biological implications of m6A methylation on the lncRNA CARMN remain elusive in colorectal cancer, especially for mutant p53 gain-of-function. Here, we elucidate that CARMN exhibits diminished expression levels in colorectal cancer patients with mutant p53, attributed to its rich m6A methylation, which promotes cancer proliferation, invasion and metastasis in vitro and in vivo. Further investigation illustrates that ALKBH5 acts as a direct demethylase of CARMN, targeting 477 methylation sites, thereby preserving CARMN expression. However, the interaction of mutant p53 with the ALKBH5 promoter impedes its transcription, enhancing m6A methylation levels on CARMN. Subsequently, YTHDF2/YTHDF3 recognise and degrade m6A-modified CARMN. Concurrently, overexpressing CARMN significantly suppressed colorectal cancer progression in vitro and in vivo. Additionally, miR-5683 was identified as a direct downstream target of lncRNA CARMN, exerting an antitumour effect by cooperatively downregulating FGF2 expression. Our findings revealed the regulator and functional mechanism of CARMN in colorectal cancer with mutant p53, potentially offering insights into demethylation-based strategies for cancer diagnosis and therapy. The m6A methylation of CARMN that is prime for mutant p53 gain-of-function-induced malignant progression of colorectal cancer, identifying a promising approach for cancer therapy.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Progressão da Doença , Desmetilação , Linhagem Celular Tumoral , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
2.
Adv Sci (Weinh) ; : e2404628, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981022

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. TP53, which has a mutation rate of ≈70%-80% in TNBC patients, plays oncogenic roles when mutated. However, whether circRNAs can exert their effects on TNBC through regulating mutant TP53 has not been well evaluated. In this study, circCFL1, which is highly expressed in TNBC cells and tissues and has prognostic potential is identified. Functionally, circCFL1 promoted the proliferation, metastasis and stemness of TNBC cells. Mechanistically, circCFL1 acted as a scaffold to enhance the interaction between HDAC1 and c-Myc, further promoting the stability of c-Myc via deacetylation-mediated inhibition of K48-linked ubiquitylation. Stably expressed c-Myc further enhanced the expression of mutp53 in TNBC cells with TP53 mutations by directly binding to the promoter of TP53, which promoted the stemness of TNBC cells via activation of the p-AKT/WIP/YAP/TAZ pathway. Moreover, circCFL1 can facilitate the immune escape of TNBC cells by promoting the expression of PD-L1 and suppressing the antitumor immunity of CD8+ T cells. In conclusion, the results revealed that circCFL1 plays an oncogenic role by promoting the HDAC1/c-Myc/mutp53 axis, which can serve as a potential diagnostic biomarker and therapeutic target for TNBC patients with TP53 mutations.

3.
Autophagy ; 20(8): 1854-1867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566314

RESUMO

The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.


Assuntos
Fator 6 Ativador da Transcrição , Estresse do Retículo Endoplasmático , Lisossomos , Serina-Treonina Quinases TOR , Tapsigargina , Proteína Supressora de Tumor p53 , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Proteína Supressora de Tumor p53/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Autofagia Mediada por Chaperonas/genética , Mutação/genética , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Tunicamicina/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo
4.
Elife ; 122023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266578

RESUMO

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.


Assuntos
Neoplasias Cerebelares , Rabdomiossarcoma Embrionário , Animais , Carcinogênese , Mutação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Cells ; 11(13)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35805147

RESUMO

The tumor suppressor TP53 is the most commonly mutated gene in human cancers, and iron is necessary for cancer cell growth and proliferation, but there is a significant gap in knowledge for how the two cooperate to affect cellular physiology. Elucidating this role is complicated, however, because each TP53 mutation subtype exhibits unique phenotypic responses to changes in iron availability. The goal of this work was to determine how cells expressing distinct TP53 mutation subtypes respond to iron restriction. Utilizing a reverse genetics approach, we generated eight isogenic cell lines that either lacked TP53 expression, expressed wild-type TP53, or expressed one of the six most common TP53 "hotspot" mutations. We then employed isobaric peptide labeling and mass spectrometry to quantitively measure changes in global protein expression, both in response to induction of mutant TP53 expression, and in response to iron chelation. Our findings indicate that mutant TP53-dependent sensitivities to iron restriction are not driven by differences in responsiveness to iron chelation, but more so by mutant TP53-dependent differences in cellular antioxidant and lipid handling protein expression. These findings reinforce the importance of distinguishing between TP53 mutation subtypes when investigating approaches to target mutant TP53. We also identify unique TP53-dependent perturbances in protein expression patterns that could be exploited to improve iron-targeted chemotherapeutic strategies.


Assuntos
Antioxidantes , Proteína Supressora de Tumor p53 , Homeostase , Humanos , Ferro/metabolismo , Quelantes de Ferro , Lipídeos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Adv Sci (Weinh) ; 9(21): e2105469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35619328

RESUMO

Targeting the G2/M checkpoint mediator WEE1 has been explored as a novel treatment strategy in ovarian cancer, but mechanisms underlying its efficacy and resistance remains to be understood. Here, it is demonstrated that the WEE1 inhibitor AZD1775 induces endoplasmic reticulum stress and activates the protein kinase RNA-like ER kinase (PERK) and inositol-required enzyme 1α (IRE1α) branches of the unfolded protein response (UPR) in TP53 mutant (mtTP53) ovarian cancer models. This is facilitated through NF-κB mediated senescence-associated secretory phenotype. Upon AZD1775 treatment, activated PERK promotes apoptotic signaling via C/EBP-homologous protein (CHOP), while IRE1α-induced splicing of XBP1 (XBP1s) maintains cell survival by repressing apoptosis. This leads to an encouraging synergistic antitumor effect of combining AZD1775 and an IRE1α inhibitor MKC8866 in multiple cell lines and preclinical models of ovarian cancers. Taken together, the data reveal an important dual role of the UPR signaling network in mtTP53 ovarian cancer models in response to AZD1775 and suggest that inhibition of the IRE1α-XBP1s pathway may enhance the efficacy of AZD1775 in the clinics.


Assuntos
Endorribonucleases , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Benzopiranos , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Feminino , Humanos , Inositol/metabolismo , Morfolinas , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
7.
Int J Biol Sci ; 18(6): 2419-2438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414774

RESUMO

The most frequent genetic alterations of the TP53 gene in human cancer were reported. TP53 mutation gains new function as a target of genetic instability, which is associated with increased tumor progression and poor survival rate in patients. In this study, more than three hundred colorectal cancer patients' samples were firstly analyzed, and the results showed that patients with mutant p53 had higher levels of AKT phosphorylation and PD-L1 expression, which were next verified both in cell lines in vitro and patients' samples in vivo. Further studies demonstrated that the hotspot of mutant p53 directly binds to the promoter of PHLPP2 to inhibit its transcription, and resulting in down-regulating its protein expressional level. Subsequently, AKT was released and activated, promoting tumor proliferation and metastasis. In parallel, 4EBP1/eIF4E was identified as downstream executors of AKT to enhance the translational level of PD-L1, which decreased the activation of T cells. Besides, inhibiting AKT/mTOR pathway significantly suppressed PD-L1 expression, tumor growth, and immune escape in p53 mutated cells. In conclusion, mutant p53 achieved its Gain-of-Function by transcriptionally inhibiting PHLPP2 and activating AKT, which suppresses immune response and advances tumor growth. Thus, this study provides an excellent basis for a further understanding of the clinical treatment of neoplastic diseases for patients with mutant p53, with an emphasis on immunotherapy.


Assuntos
Antígeno B7-H1 , Proteínas Proto-Oncogênicas c-akt , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Mutação com Ganho de Função , Genes p53 , Humanos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética
8.
Cells ; 11(5)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269416

RESUMO

The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
9.
Biomolecules ; 12(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35204775

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some of their growth suppressive properties, but they may also interact with other proteins, e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53 reactivator-induced increase in therapeutic potential of many modified berberines.


Assuntos
Berberina , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Berberina/farmacologia , Berberina/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas , Proteína Supressora de Tumor p53/genética
10.
Rev. cuba. med. mil ; 51(3): e2004, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1408845

RESUMO

ABSTRACT Introduction: Some gene mutations in high grade glioma patients have many implications in prognosis and treatment response. Objectives: To describe the characteristics and associations of IDH, TP53 gene mutations and MGMT methylation status with some characteristics and treatment response in patients with high grade glioma. Methods: A descriptive, prospective, uncontrolled study was conducted, in 52 patients with high-grade glioma. Research variables include age, sex, Karnofsky score, the rate of IDH, P53 mutation, MGMT methylation; the relationship between genes mutation with some characteristics and response to treatment according to the RECIST classification. Results: For IDH gene mutation, grade III patients (23.1%) have a higher positive rate than grade IV (11.5 %); for P53 gene mutation, grade III patients (55.6 %) have a higher positive rate than grade IV (44.1 %); the rate of MGMT promoter methylation occurred in the study group of patients with the rate of 42.3 %. There is a relationship between IDH gene mutation with pathological results and malignancy in studied patients. Patients with the mutant expression of the IDH gene, p53, MGMT methylation status had better RECIST responses than patients without these expressions. Conclusion: High-grade glioma mainly occurs in men, over 40 years old. The presence of mutations in IDH, P53 genes, and MGMT methylation status was a beneficial factor for treatment response as assessed by RECIST.


RESUMEN Introducción: Algunas mutaciones genéticas en pacientes con glioma de alto grado tienen implicaciones en el pronóstico y respuesta al tratamiento. Objetivos: Describir las características y asociaciones de IDH, mutaciones del gen TP53 y estado de metilación de MGMT con algunas características y respuesta al tratamiento en pacientes con glioma de alto grado. Métodos: Se realizó un estudio descriptivo, prospectivo no controlado, en 52 pacientes con glioma de alto grado. Las variables investigadas fueron: edad, sexo, puntuación de Karnofsky, tasa de IDH, mutación P53, estado de metilación de MGMT, relación entre la mutación de genes con algunas características y la respuesta al tratamiento según la clasificación RECIST. Resultados: Mutación del gen IDH: los pacientes grado III (23,1 %) tienen una tasa positiva más alta que los grado IV (11,5 %). Mutación del gen P53: los grado III (55,6 %) tienen una tasa positiva más alta que los grado IV (44,1 %). La tasa de metilación del promotor de MGMT se produjo con una tasa del 42,3 %. Existe relación entre la mutación del gen IDH con los resultados patológicos y la malignidad. Los pacientes con la expresión mutante del gen IDH, p53, estado de metilación de MGMT tuvieron mejores respuestas RECIST. Conclusión: El glioma de alto grado se presenta principalmente en hombres, mayores de 40 años. La presencia de mutaciones en los genes IDH, P53 y el estado de metilación de MGMT fue un factor beneficioso para la respuesta al tratamiento según lo evaluado por RECIST.

11.
J Exp Clin Cancer Res ; 40(1): 27, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422090

RESUMO

The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein ß-arrestin1 (ß-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/ß-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/ß-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endotelina-1/metabolismo , Neoplasias/genética , Fatores de Transcrição/metabolismo , Feminino , Humanos
12.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942535

RESUMO

The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary "hotspot" mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.


Assuntos
Ferroptose/genética , Proteínas Reguladoras de Ferro/genética , Ferro/metabolismo , Mutação/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Reguladoras de Ferro/metabolismo , Peroxidação de Lipídeos/genética , Proteínas de Ligação a RNA/genética , Regulação para Cima/genética
13.
Methods Mol Biol ; 2108: 297-303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31939190

RESUMO

TNBC is an aggressive and metastatic subtype of breast cancer in which TP53 mutation occurs frequently and is associated with particularly poor outcome. Mutations in TP53 can disrupt the intrinsic function of the tumor suppressor as well as acquire oncogenic gain-of-function (GOF) activities. However, little is known about its oncogenic GOF mediators and functions. Targeted therapy for TNBC patients is thus one of the most urgent needs in breast cancer therapeutics, and identifying genes that have synthetic lethal interactions with mutant TP53 may be a promising approach. In this chapter, we present procedures on sequential analysis of RNA-seq followed by high-throughput RNA interference screening (HTS-RNAi screening). This approach has been utilized to identify genes with synthetic lethality of mutant TP53, providing a promising strategy for the treatment of mutant TP53 in TNBC and determining its impact on tumorigenesis.


Assuntos
Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Interferência de RNA , Mutações Sintéticas Letais , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transcriptoma
14.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835684

RESUMO

The key role of p53 as a tumor suppressor became clear when it was realized that this gene is mutated in 50% of human sporadic cancers, and germline mutations expose carriers to cancer risk throughout their lifespan. Mutations in this gene not only abolish the tumor suppressive functions of p53, but also equip the protein with new pro-oncogenic functions. Here, we review the mechanisms by which these new functions gained by p53 mutants promote tumorigenesis.


Assuntos
Mutação/genética , Oncogenes , Proteína Supressora de Tumor p53/genética , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Hipóxia Tumoral/genética
15.
Nutrients ; 11(9)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500291

RESUMO

The most commonly mutated gene in all human cancers is the tumor suppressor gene TP53; however, in addition to the loss of tumor suppressor functions, mutations in TP53 can also promote cancer progression by altering cellular iron acquisition and metabolism. The primary objective of this work was to determine how TP53 mutation status influences the molecular control of iron homeostasis. The effect of TP53 mutation type on cellular iron homeostasis was examined using cell lines with inducible versions of either wild-type TP53 or a representative mutated TP53 gene from exemplary "hotspot" mutations in the DNA binding domain (R248, R273, and R175) as well as H193Y. The introduction of distinct TP53 mutation types alone was sufficient to disrupt cellular iron metabolism. These effects were mediated, at least in part, due to differences in the responsiveness of iron regulatory proteins (IRPs) to cellular iron availability. IRPs are considered the master regulators of intracellular iron homeostasis because they coordinate the expression of iron storage (ferritin) and iron uptake (transferrin receptor) genes. In response to changes in iron availability, cells harboring either a wild-type TP53 or R273H TP53 mutation displayed canonical IRP-mediated responses, but neither IRP1 RNA binding activity nor IRP2 protein levels were affected by changes in iron status in cells harboring the R175H mutation type. However, all mutation types exhibited robust changes in ferritin and transferrin receptor protein expression in response to iron loading and iron chelation, respectively. These findings suggest a novel, IRP-independent mode of iron regulation in cells expressing distinct TP53 mutations. As TP53 is mutated in nearly half of all human cancers, and iron is necessary for cancer cell growth and proliferation, the studies have implications for a wide range of clinically important cancers.


Assuntos
Proteínas Reguladoras de Ferro/metabolismo , Ferro/metabolismo , Mutação/fisiologia , Proteína Supressora de Tumor p53/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Homeostase , Humanos
16.
Cancers (Basel) ; 11(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577483

RESUMO

The tumor suppressor p53 (TP53) is the most frequently mutated human gene. Mutations in TP53 not only disrupt its tumor suppressor function, but also endow oncogenic gain-of-function (GOF) activities in a manner independent of wild-type TP53 (wtp53). Mutant TP53 (mutp53) GOF is mainly mediated by its binding with other tumor suppressive or oncogenic proteins. Increasing evidence indicates that stabilization of mutp53 is crucial for its GOF activity. However, little is known about factors that alter mutp53 stability and its oncogenic GOF activities. In this review article, we primarily summarize key regulators of mutp53 stability/activities, including genotoxic stress, post-translational modifications, ubiquitin ligases, and molecular chaperones, as well as a single nucleotide polymorphism (SNP) and dimer-forming mutations in mutp53.

17.
J Pathol ; 246(1): 77-88, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29888503

RESUMO

As tumor protein 53 (p53) isoforms have tumor-promoting, migration, and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full-length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT-qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumor-associated macrophage content, and various immune cell markers. Elevated levels of Δ133p53ß mRNA characterised glioblastomas with increased CD163-positive macrophages and wild-type TP53. In situ-based analyses found Δ133p53ß expression localised to malignant cells in areas with increased hypoxia, and in cells with the monocyte chemoattractant protein C-C motif chemokine ligand 2 (CCL2) expressed. Tumors with increased Δ133p53ß had increased numbers of cells positive for macrophage colony-stimulating factor 1 receptor (CSF1R) and programmed death ligand 1 (PDL1). In addition, cells expressing a murine 'mimic' of Δ133p53 (Δ122p53) were resistant to temozolomide treatment and oxidative stress. Our findings suggest that elevated Δ133p53ß is an alternative pathway to TP53 mutation in glioblastoma that aids tumor progression by promoting an immunosuppressive and chemoresistant environment. Adding Δ133p53ß to a TP53 signature along with TP53 mutation status will better predict treatment resistance in glioblastoma. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular , Quimiocina CCL2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Macrófagos/metabolismo , Camundongos , Mutação , Estresse Oxidativo , Isoformas de Proteínas , Receptores de Superfície Celular/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais , Temozolomida/farmacologia , Hipóxia Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Regulação para Cima
18.
Autophagy ; 9(12): 2158-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24145670

RESUMO

Accumulation of mutant TP53 proteins in cancer cells has been recognized as an important factor that promotes cancer progression and metastasis. Thus, strategies that promote the degradation of mutant TP53 might be beneficial for the treatment of cancers. In a recent issue of Genes & Development, we demonstrated that blocking macroautophagy under nutritional stress condition leads to the degradation of mutant TP53 through activating the chaperone-mediated autophagy (CMA) pathway in nonproliferating cancer cells. We propose CMA as a new degradative mechanism for mutant TP53 and the possibility of activating CMA as a new treatment for cancers with mutant TP53.


Assuntos
Proteínas Mutantes/metabolismo , Neoplasias/metabolismo , Proteólise , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Benzilaminas/farmacologia , Humanos , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA