Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Handb Clin Neurol ; 203: 111-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174243

RESUMO

Pediatric skeletal muscle channelopathies include a spectrum of conditions including nondystrophic myotonias and periodic paralyses. They are rare inherited conditions that can cause significant morbidity. They are characterized by episodic stiffness and weakness. While there is significant phenotypic variability, there are distinct diagnostic features. The nondystrophic myotonias encompass myotonia congenita, paramyotonia congenita, and sodium channel myotonia caused by mutations in chloride and sodium channels. The clinical manifestations vary across age groups and a small subset with sodium channel mutations may have severe presentation with fetal akinesia, laryngospasm, or congenital myopathy. The periodic paralyses include hypokalemic periodic paralysis, hyperkalemic periodic paralysis, and Andersen-Tawil syndrome. The phenotypic differences between the groups can be helpful in diagnosis. It is important to review the cardiac phenotype in Andersen-Tawil syndrome due to a risk of life-threatening cardiac arrhythmias. Early and accurate diagnosis utilizing clinical features aided by investigations is important across all the pediatric channelopathies, as effective symptomatic treatment is available and can substantially improve quality of life.


Assuntos
Canalopatias , Humanos , Canalopatias/genética , Canalopatias/diagnóstico , Criança , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Pediatria/métodos , Miotonia/genética , Miotonia/diagnóstico , Mutação/genética
2.
Handb Clin Neurol ; 203: 205-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174249

RESUMO

Neuromyotonia is continuous peripheral nerve hyper-excitability manifesting in muscle twitching at rest (myokymia), inducible cramps and impaired muscle relaxation, and characterized by EMG findings of spontaneous single motor unit discharges (with doublet, triplet, or multiplet morphology). The disorder may be genetic, acquired, and often in the acquired cases autoimmune. This chapter focuses on autoimmune acquired causes. Autoimmune associations include mainly contactin-associated protein-like 2 (CASPR2) antibody-associated disease (previously termed as VGKC or voltage-gated potassium channel antibody-associated neuromyotonia) (van Sonderen et al., 2016, p. 2), leucine-rich glioma-inactivated 1 (LGI1) antibody disease, the Guillain-Barré syndrome, NMDAR encephalitis (Varley et al., 2019), and IgLON5 (Gaig et al., 2021) disease. Nonimmune associations include radiation-induced plexopathy. An association with myasthenia gravis and other autoimmune disorders, response to plasma exchange (Newsom-Davis and Mills, 1993) and physiologically induced changes in mice injected with patient-derived immunoglobulins led to the discovery of autoantibodies to juxtaparanodal proteins complexed with potassium channels (Shillito et al., 1995). The target of the antibodies is most commonly the CASPR2 protein. The disorder may be paraneoplastic, and a search for and treatment of an underlying tumor is a necessary step. In cases in which there is evidence for an immune cause, then immune suppression, with an emerging role for B cell-depleting therapies, is associated with a good clinical outcome. In parallel, sodium channel blocking drugs remain effective symptomatic therapies.


Assuntos
Síndrome de Isaacs , Humanos , Síndrome de Isaacs/terapia , Síndrome de Isaacs/imunologia , Síndrome de Isaacs/diagnóstico , Animais , Autoanticorpos/imunologia , Proteínas de Membrana , Proteínas do Tecido Nervoso
3.
Handb Clin Neurol ; 203: 39-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174253

RESUMO

Periodic paralysis is a rare, dominantly inherited disorder of skeletal muscle in which episodic attacks of weakness are caused by a transient impairment of fiber excitability. Attacks of weakness are often elicited by characteristic environmental triggers, which were the basis for clinically delineating subtypes of periodic paralysis and are an important distinction for optimal disease management. All forms of familial periodic paralysis are caused by mutations of ion channels, often selectively expressed in skeletal muscle, that destabilize the resting potential. The missense mutations usually alter channel function through gain-of-function changes rather than producing a complete loss-of-function null. The knowledge of which channel gene harbors a variant, whether that variant is expected to (or known to) alter function, and how altered function impairs fiber excitability aides in the interpretation of patient signs and symptoms, the interpretation of gene test results, and how to optimize therapeutic intervention for symptom management and improve quality of life.


Assuntos
Paralisias Periódicas Familiares , Humanos , Paralisias Periódicas Familiares/genética , Paralisias Periódicas Familiares/diagnóstico , Paralisias Periódicas Familiares/terapia , Mutação/genética , Canais Iônicos/genética , Músculo Esquelético/fisiopatologia
4.
Handb Clin Neurol ; 203: 25-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174252

RESUMO

The inherited myotonias are a complex group of diseases caused by variations in genes that encode or modulate the expression of ion channels that regulate muscle excitability. These variations alter muscle membrane excitability allowing mild depolarization, causing myotonic discharges. There are two groups of inherited myotonia, the dystrophic and the nondystrophic myotonias (NDM). Patients with NDM have a pure muscle phenotype with variations in channel genes expressed in muscle. The dystrophic myotonias are caused by genes that alter splicing leading to more systemic effects with myotonia being one of a number of systemic symptoms. This chapter therefore focuses on the key aspects of the NDMs. The NDMs manifest with varying clinical phenotypes, which change from infancy to adulthood. The pathogenicity of different variants can be determined using heterologous expression systems to understand the alteration in channel properties and predict the likelihood of causing disease. Myotonia itself can be managed by lifestyle modifications. A number of randomized controlled trials demonstrate efficacy of mexiletine and lamotrigine in treating myotonia, but there is an evidence that specific variants may be more or less well-treated by the different agents because of how they alter the channel kinetics. More work is needed to develop more targeted genetic treatments.


Assuntos
Miotonia , Humanos , Miotonia/genética , Miotonia/diagnóstico
5.
Pflugers Arch ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150500

RESUMO

Patients with myotonia congenita suffer from slowed relaxation of muscle (myotonia), due to hyperexcitability caused by loss-of-function mutations in the ClC-1 chloride channel. A recent study suggested that block of large-conductance voltage- and Ca2+- activated K+ channels (BK) may be effective as therapy. The mechanism underlying efficacy was suggested to be lessening of the depolarizing effect of build-up of K+ in t-tubules of muscle during repetitive firing. BK channels are widely expressed in the nervous system and have been shown to play a central role in regulation of excitability, but their contribution to muscle excitability has not been determined. We performed intracellular recordings as well as force measurements in both wild type and BK-/- mouse extensor digitorum longus muscles. Action potential width was increased in BK-/- muscle due to slowing of repolarization, consistent with the possibility K+ build-up in t-tubules is lessened by block of BK channels in myotonic muscle. However, there was no difference in the severity of myotonia triggered by block of muscle Cl- channels with 9-anthracenecarboxylic acid (9AC) in wild type and BK-/- muscle fibers. Further study revealed no difference in the interspike membrane potential during repetitive firing suggesting there was no reduction in K+ build-up in t-tubules of BK-/- muscle. Force recordings following block of muscle Cl- channels demonstrated little reduction in myotonia in BK-/- muscle. In contrast, the current standard of care, mexiletine, significantly reduced myotonia. Our data suggest BK channels regulate muscle excitability, but are not an attractive target for therapy of myotonia.

6.
J Physiol ; 602(16): 3975-3994, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031529

RESUMO

The function of the chloride channel ClC-1 is crucial for the control of muscle excitability. Thus, reduction of ClC-1 functions by CLCN1 mutations leads to myotonia congenita. Many different animal models have contributed to understanding the myotonia pathophysiology. However, these models do not allow in vivo screening of potentially therapeutic drugs, as the zebrafish model does. In this work, we identified and characterized the two zebrafish orthologues (clc-1a and clc-1b) of the ClC-1 channel. Both channels are mostly expressed in the skeletal muscle as revealed by RT-PCR, western blot, and electrophysiological recordings of myotubes, and clc-1a is predominantly expressed in adult stages. Characterization in Xenopus oocytes shows that the zebrafish channels display similar anion selectivity and voltage dependence to their human counterparts. However, they show reduced sensitivity to the inhibitor 9-anthracenecarboxylic acid (9-AC), and acidic pH inverts the voltage dependence of activation. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement, which could be reverted by expression of human ClC-1 but not by some ClC-1 containing myotonia mutations. Treatment of clc-1-depleted zebrafish with mexiletine, a typical drug used in human myotonia, improves the motor behaviour. Our work extends the repertoire of ClC channels to evolutionary structure-function studies and proposes the zebrafish clcn1 crispant model as a simple tool to find novel therapies for myotonia. KEY POINTS: We have identified two orthologues of ClC-1 in zebrafish (clc-1a and clc-1b) which are mostly expressed in skeletal muscle at different developmental stages. Functional characterization of the activity of these channels reveals many similitudes with their mammalian counterparts, although they are less sensitive to 9-AC and acidic pH inverts their voltage dependence of gating. Reduction of clc-1a/b expression hampers spontaneous and mechanically stimulated movement which could be reverted by expression of human ClC-1. Myotonia-like symptoms caused by clc-1a/b depletion can be reverted by mexiletine, suggesting that this model could be used to find novel therapies for myotonia.


Assuntos
Canais de Cloreto , Peixe-Zebra , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Canais de Cloreto/fisiologia , Animais , Humanos , Modelos Animais de Doenças , Miotonia/genética , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Xenopus laevis , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Miotonia Congênita/genética , Antracenos
7.
Muscle Nerve ; 70(2): 240-247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38855810

RESUMO

INTRODUCTION/AIMS: Myotonia congenita (MC) is the most common hereditary channelopathy in humans. Characterized by muscle stiffness, MC may be transmitted as either an autosomal dominant (Thomsen) or a recessive (Becker) disorder. MC is caused by variants in the voltage-gated chloride channel 1 (CLCN1) gene, important for the normal repolarization of the muscle action potential. More than 250 disease-causing variants in the CLCN1 gene have been reported. This study provides an MC genotype-phenotype spectrum in a large cohort of Greek patients and focuses on novel variants and disease epidemiology, including additional insights for the variant CLCN1:c.501C > G. METHODS: Sanger sequencing for the entire coding region of the CLCN1 gene was performed. Targeted segregation analysis of likely candidate variants in additional family members was performed. Variant classification was based on American College of Medical Genetics (ACMG) guidelines. RESULTS: Sixty-one patients from 47 unrelated families were identified, consisting of 51 probands with Becker MC (84%) and 10 with Thomsen MC (16%). Among the different variants detected, 11 were novel and 16 were previously reported. The three most prevalent variants were c.501C > G, c.2680C > T, and c.1649C > G. Additionally, c.501C > G was detected in seven Becker cases in-cis with the c.1649C > G. DISCUSSION: The large number of patients in whom a diagnosis was established allowed the characterization of genotype-phenotype correlations with respect to both previously reported and novel findings. For the c.501C > G (p.Phe167Leu) variant a likely nonpathogenic property is suggested, as it only seems to act as an aggravating modifying factor in cases in which a pathogenic variant triggers phenotypic expression.


Assuntos
Canais de Cloreto , Genótipo , Miotonia Congênita , Humanos , Miotonia Congênita/genética , Canais de Cloreto/genética , Feminino , Masculino , Grécia/epidemiologia , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Adulto Jovem , Adolescente , Criança , Idoso , Mutação , Pré-Escolar , Estudos de Associação Genética , Fenótipo
8.
Mol Biol Rep ; 51(1): 766, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877370

RESUMO

BACKGROUND: Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS: Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS: In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS: As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.


Assuntos
Canais de Cloreto , Sequenciamento do Exoma , Mutação , Miotonia Congênita , Humanos , Miotonia Congênita/genética , Miotonia Congênita/diagnóstico , Sequenciamento do Exoma/métodos , Canais de Cloreto/genética , Feminino , Masculino , Egito , Criança , Adolescente , Mutação/genética , Pré-Escolar , Adulto Jovem , Lactente , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Linhagem , Eletromiografia
9.
Rev Neurol (Paris) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38811249

RESUMO

Non-dystrophic myotonias (NDM) are disabling genetic diseases that impact quality of life. To reduce the impact of NDM, patients develop coping strategies such as lifestyle adaptation and avoiding key triggers. To understand how myotonia affects patients' lives, the IMPACT survey, an online questionnaire on patient-reported outcomes, was developed based on international IMPACT questionnaire. The French IMPACT 2022 survey was completed by 47 NDM French patients. Besides muscle stiffness (98%), patients reported muscle pain (83%), falls (70%) and anxiety (77%). These issues negatively impacted abilities to work/study (49%), daily life at home (49%) and overall mobility outside (49%). Most patients (96%) reported ongoing pharmacological treatment (mexiletine, 91%) associated with improvement in muscle stiffness (100%) and reduction in falls (94%), muscle pain (87%) and anxiety (80%). Patients were moderately satisfied (19.1%), satisfied (42.6%) and very satisfied (29.8%) with the current management; 32% rated their quality of life positively (≥ 8 on 10-point scale). In conclusion, this French survey confirms the impact of myotonia on daily life and quality of life. The improvement in patient-reported outcomes in treated participants highlights the importance of managing myotonia with effective treatments. More work should be initiated to assess the importance of NDM symptom management and patients' adherence and compliance to treatment.

10.
Rinsho Shinkeigaku ; 64(5): 344-348, 2024 May 24.
Artigo em Japonês | MEDLINE | ID: mdl-38644209

RESUMO

A Japanese woman experienced slowness of movement in her early teens and difficulty in opening her hands during pregnancy. On admission to our hospital at 42 years of age, she showed grip myotonia with warm-up phenomenon. However, she had neither muscle weakness, muscle atrophy, cold-induced symptomatic worsening nor episodes of transient weakness of the extremities. Needle electromyography of the first dorsal interosseous and anterior tibial muscles demonstrated myotonic discharges. Whole exome sequencing of the patient revealed a heterozygous single-base substitution in the CLCN1 gene (c.1028T>G, p.F343C). The same substitution was identified in affected members of her family (mother and brother) by Sanger sequencing, but not in healthy family members (father and a different brother). We diagnosed myotonia congenita (Thomsen disease) with a novel CLCN1 mutation in this pedigree. This mutation causes a single amino acid substitution in the I-J extracellular loop region of CLCN1. Amino acid changes in the I-J loop region are rare in an autosomal-dominantly inherited form of myotonia congenita. We think that this pedigree is precious to understand the pathogenesis of myotonia congenita.


Assuntos
Canais de Cloreto , Mutação , Miotonia Congênita , Linhagem , Humanos , Miotonia Congênita/genética , Canais de Cloreto/genética , Feminino , Adulto , Substituição de Aminoácidos , Masculino
11.
Biomedica ; 44(1): 54-66, 2024 03 31.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38648352

RESUMO

Introduction. During the development of the SARS-CoV-2 pandemic in Antioquia, we experienced epidemiological peaks related to the α, É£, ß, ƛ, and δ variants. δ had the highest incidence and prevalence. This lineage is of concern due to its clinical manifestations and epidemiological characteristics. A total of 253 δ sublineages have been reported in the PANGOLIN database. The sublineage identification through genomic analysis has made it possible to trace their evolution and propagation. Objective. To characterize the genetic diversity of the different SARS-CoV-2 δ sublineages in Antioquia and to describe its prevalence. Materials and methods. We collected sociodemographic information from 2,675 samples, and obtained 1,115 genomes from the GISAID database between July 12th, 2021, and January 18th, 2022. From the analyzed genomes, 515 were selected because of their high coverage values (>90%) to perform phylogenetic analysis and to infer allele frequencies of mutations of interest. Results. We characterized 24 sublineages. The most prevalent was AY.25. Mutations of interest as L452R, P681R, and P681H were identified in this sublineage, comprising a frequency close to 0.99. Conclusions. This study identified that the AY.25 sublineage has a transmission advantage compared to the other δ sublineages. This attribute may be related to the presence of the L452R and P681R mutations associated in other studies with higher evasion of the immune system and less efficacy of drugs against SARS-CoV-2.


Introducción. Durante el desarrollo de la pandemia por SARS-CoV-2 en Antioquia se presentaron picos epidemiológicos relacionados con las variantes α, É£, ß, ƛ y δ, donde δ tuvo la mayor incidencia y prevalencia. Este linaje se considera una variante de preocupación dadas las manifestaciones clínicas que desencadena y sus características epidemiológicas. Se han informado 253 sublinajes δ en la base de datos PANGOLIN. La identificación de estos sublinajes mediante análisis genómico ha permitido rastrear su evolución y propagación. Objetivo. Caracterizar la diversidad genética de los diferentes sublinajes δ de SARSCoV-2 en Antioquia y determinar su prevalencia. Materiales y métodos. Se recopiló información sociodemográfica de 2.675 muestras y de 1.115 genomas del repositorio GISAID entre el 12 de julio de 2021 y el 18 de enero de 2022. Se seleccionaron 501 por su alto porcentaje de cobertura (>90 %) para realizar análisis filogenéticos e inferencia de frecuencias alélicas de mutaciones de interés. Resultados. Se caracterizaron 24 sublinajes donde el más prevalente fue AY.25. En este sublinaje se identificaron mutaciones de interés como L452R, P681R y P681H, que comprendían una frecuencia cercana a 0,99. Conclusiones. Este estudio permitió identificar que el sublinaje AY.25 tiene una ventaja de transmisión en comparación con los otros sublinajes δ. Esto puede estar relacionado con la presencia de las mutaciones L452R y P681R que en otros estudios se han visto asociadas con una mayor transmisibilidad, evasión del sistema inmunitario y menor eficacia de los medicamentos contra SARS-CoV-2.


Assuntos
COVID-19 , Genoma Viral , Filogenia , SARS-CoV-2 , Colômbia/epidemiologia , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Masculino , Feminino , Mutação , Adulto , Pessoa de Meia-Idade , Pandemias , Adulto Jovem , Idoso , Adolescente , Frequência do Gene , Variação Genética
12.
J Neuromuscul Dis ; 11(3): 725-734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427496

RESUMO

Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.


Assuntos
Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Mutação Puntual , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Eletromiografia , Itália , Miotonia/genética , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
13.
Epilepsia Open ; 9(3): 951-959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544349

RESUMO

OBJECTIVES: Myotonia is a clinical sign typical of a group of skeletal muscle channelopathies, the non-dystrophic myotonias. These disorders are electrophysiologically characterized by altered membrane excitability, due to specific genetic variants in known causative genes (CLCN1 and SCN4A). Juvenile Myoclonic Epilepsy (JME) is an epileptic syndrome identified as idiopathic generalized epilepsy, its genetics is complex and still unclarified. The co-occurrence of these two phenotypes is rare and the causes likely have a genetic background. In this study, we have genetically investigated an Italian family in which co-segregates myotonia, JME, or abnormal EEG without seizures was observed. METHODS: All six individuals of the family, 4 affected and 2 unaffected, were clinically evaluated; EMG and EEG examinations were performed. For genetic testing, Exome Sequencing was performed for the six family members and Sanger sequencing was used to confirm the candidate variant. RESULTS: Four family members, the mother and three siblings, were affected by myotonia. Moreover, EEG recordings revealed interictal generalized sharp-wave discharges in all affected individuals, and two siblings were affected by JME. All four affected members share the same identified variant, c.644 T > C, p.Ile215Thr, in SCN4A gene. Variants that could account for the epileptic phenotype alone, separately from the myotonic one, were not identified. SIGNIFICANCE: These results provide supporting evidence that both myotonic and epileptic phenotypes could share a common genetic background, due to variants in SCN4A gene. SCN4A pathogenic variants, already known to be causative of myotonia, likely increase the susceptibility to epilepsy in our family. PLAIN LANGUAGE SUMMARY: This study analyzed all members of an Italian family, in which the mother and three siblings had myotonia and epilepsy. Genetic analysis allowed to identify a variant in the SCN4A gene, which appears to be the cause of both clinical signs in this family.


Assuntos
Eletroencefalografia , Epilepsia Generalizada , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Epilepsia Generalizada/genética , Itália , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Fenótipo
14.
Animals (Basel) ; 14(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473107

RESUMO

(1) Background: Muscle hypertrophy, swallowing disorders, and gait abnormalities are clinical signs common to many muscle diseases, including muscular dystrophies, non-dystrophic myotonias, genetic myopathies associated with deficiency of myostatin, and acquired inflammatory myopathies. Here, we investigated underlying causes of this triad of clinical signs in four young French bulldogs via muscle histopathology coupled with whole genome and Sanger sequencing. (2) Methods: Dogs were evaluated by veterinary clinical internists and neurologists, and biopsies were obtained for histopathological diagnosis. DNA was submitted for whole genome sequencing, followed by bioinformatics evaluation and confirmation of variants via Sanger sequencing in two cases. (3) Results: Two novel variants were identified. The first, found in two related French bulldogs, was a homozygous variant in the chloride channel gene CLCN1 known to cause non-dystrophic congenital myotonia, and the second, found in an unrelated French bulldog, was a heterozygous variant in the cAMP phosphodiesterase gene PDE4C, which is the major phosphodiesterase expressed in skeletal muscle and may play a role in decreasing muscle atrophy. An underlying molecular basis in one other case has not yet been identified. (4) Conclusions: Here, we identified two novel variants, one in the CLCN1 and one in the PDE4C gene, associated with clinical signs of muscle hypertrophy, dysphagia, and gait abnormalities, and we suggested other bases of these phenotypes in French bulldogs that are yet to be discovered. Identification of genes and deleterious variants associated with these clinical signs may assist breeders in improving the overall health of this very popular breed and may lead to the identification of new therapies to reverse muscle atrophy in people and animals with neuromuscular diseases.

15.
Cureus ; 16(2): e53981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38469025

RESUMO

Congenital myotonia represents a rare group of genetically inherited conditions. It can be either autosomal dominant (Thomsen) or autosomal recessive (Becker). It is characterized by muscular hypertrophy, proximal weakness, and myotonia, or impaired relaxation after contraction. These are due to mutations in the CLC1 gene. A 14-year-old male child presented with complaints of gradually progressive weakness for five years. Weakness was more pronounced in the proximal muscle groups. The weakness worsened after rest and improved with activity. This led to absenteeism and affected his school performance. Clinical examination showed generalized muscular hypertrophy with pronounced hypertrophy of the calf muscles. A neurological examination showed significant myotonia and impaired relaxation after making a fist. The diagnosis of myotonia was confirmed by electromyography, which produced a dive-bomber sound on insertion. Next-generation sequencing revealed a homozygous eight-base pair insertion in exon 19 of the CLCN1 gene. This mutation has not been reported in the existing literature for myotonia congenita. The child was started on mexiletine and improved significantly. Presently, the patient is on regular medications and doing well on follow-up. Though rare, congenital myotonia is an important cause of neuromuscular weakness. It can be easily diagnosed with a thorough clinical examination and routine testing for myotonia in all children with weakness. The treatment is relatively simple and can give the patient significant relief. Myotonia can be easily diagnosed clinically, and pharmacotherapy and proper monitoring can remarkably improve patients' quality of life.

16.
Neurol Sci ; 45(8): 3989-4001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38403671

RESUMO

BACKGROUND: The rare nature of dystrophic and non-dystrophic myotonia has limited the available evidence on the efficacy of mexiletine as a potential treatment. To address this gap, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of mexiletine for both dystrophic and non-dystrophic myotonic patients. METHODS: The search was conducted on various electronic databases up to March 2023, for randomized clinical trials (RCTs) comparing mexiletine versus placebo in myotonic patients. A risk of bias assessment was carried out, and relevant data was extracted manually into an online sheet. RevMan software (version 5.4) was employed for analysis. RESULTS: A total of five studies, comprising 186 patients, were included in the meta-analysis. Our findings showed that mexiletine was significantly more effective than placebo in improving stiffness score (SMD = - 1.19, 95% CI [- 1.53, - 0.85]), as well as in reducing hand grip myotonia (MD = - 1.36 s, 95% CI [- 1.83, - 0.89]). Mexiletine also significantly improved SF-36 Physical and Mental Component Score in patients with non-dystrophic myotonia only. Regarding safety, mexiletine did not significantly alter ECG parameters but was associated with greater gastrointestinal symptoms (GIT) compared to placebo (RR 3.7, 95% CI [1.79, 7.64]). Other adverse events showed no significant differences. CONCLUSION: The results support that mexiletine is effective and safe in myotonic patients; however, it is associated with a higher risk of GIT symptoms. Due to the scarcity of published RCTs and the prevalence of GIT symptoms, we recommend further well-designed RCTs testing various drug combinations to reduce GIT symptoms.


Assuntos
Mexiletina , Miotonia , Humanos , Mexiletina/uso terapêutico , Miotonia/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
17.
BMJ Neurol Open ; 6(1): e000498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361966

RESUMO

Background: Sialidosis is a rare disorder caused by mutations in the NEU1 gene located on chromosome 6p21.3, constituting a group of autosomal recessive diseases. Enzyme activity analysis, electron microscopy examination and genetic testing are reliable methods for diagnosis. Despite previous reports on the disease, its rarity means that its clinical manifestations and prognosis still warrant attention due to the limited amount of information available. Methods: We report a case of a 40-year-old woman who was admitted to our hospital for worsening dysarthria of 16 years duration and facial and limb twitching that had been present for 2 years. Genetic testing was undertaken. Results: Genetic testing confirmed type I sialidosis, the first reported instance of this disease in the Hainan Free Trade Port in China. The patient did not have the typical cherry-red spot in the fundus. Despite aggressive treatment, she died of status epilepticus 2 months later. This result indicates that the disease has a poor prognosis. Discussion: Cherry-red spots in the fundus are characteristic features of type I sialidosis and it has been referred to as the cherry-red spot myoclonus syndrome. We hypothesise that environmental factors may also play a significant role. Overemphasis on the presence of cherry-red spots may mislead clinicians and delay diagnosis. Furthermore, patients presenting with isolated myoclonus should undergo visual evoked potential and somatosensory evoked potential tests, as well as genetic testing to confirm or rule out sialidosis.

18.
Eur J Health Econ ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416296

RESUMO

INTRODUCTION: The Individualized Neuromuscular Quality of Life Questionnaire (INQoL) is used to measure quality of life in neuromuscular disorders such as non-dystrophic myotonia (NDM). Here we report methods to estimate utilities, with a focus on NDM, from this questionnaire based on two preference elicitation exercises. METHODS: Eight items from the INQoL were selected with input from three neuromuscular disorder clinical experts with expertise in treating NDM. A discrete choice experiment (DCE) survey of UK general public respondents (n = 508) described outcomes defined by the INQoL items. The same 8 items were also valued using time trade-off (TTO) face-to-face interviews (n = 200). A hybrid regression modelling approach combined both datasets to inform the utility weights. RESULTS: Hybrid modelling of DCE and TTO data in conjunction improved out-of-sample predictive accuracy. The selected INQoL utility model indicates substantial disutility associated with all eight dimensions of health, with the greatest losses associated with subjective items such as pain and depression. DISCUSSION: The hybrid modelling approach allows us to combine data from the two methodologies and maximize the information from each to inform the utility weights for the INQoL. The TTO is the more conventional valuation method, but combined with the larger DCE study produced better descriptive coverage. This is a relatively novel method for estimating weights which we think is particularly well suited to economic evaluations of orphan drugs.

19.
J Neuromuscul Dis ; 11(2): 411-423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306059

RESUMO

Background: Myotonic disorders, such as non-dystrophic myotonias (NDMs) and myotonic dystrophies (DMs) are characterized by a delay in muscle relaxation after a contraction stimulus. There is general consensus that protocols to treat myotonia need to be implemented. Objective: Mexiletine is the only pharmacological agent approved for the symptomatic treatment of myotonia in adult patients with NDM and is considered to be the first-line treatment for DMs; however, its production in Italy was halted in 2022 making its availability to patients problematic. Methods: A panel of 8 Italian neurologists took part in a two-round Delphi panel between June and October 2022, analyzing the current use of mexiletine in Italian clinical practice. Results: The panelists assist 1126 patients (69% DM type1, 18% NDM and 13% DM type2). Adult NDM patients receive, on average, 400-600 mg of mexiletine hydrochloride (HCl) while adult DM patients receive 100-600 mg, per day in the long-term. The severity of symptoms is considered the main reason to start mexiletine treatment for both NDM and DM patients. Mexiletine is reckoned to have a clinical impact for both NDM and DM patients, but currently drug access is problematic. Conclusions: Mexiletine treatment is recognized to have a role in the reduction of the symptomatic burden for NDM and DM patients. Patient management could be improved by facilitating access to therapy and developing new drug formulations.


Assuntos
Miotonia , Distrofia Miotônica , Adulto , Humanos , Mexiletina/uso terapêutico , Miotonia/induzido quimicamente , Miotonia/diagnóstico , Miotonia/tratamento farmacológico , Neurologistas , Distrofia Miotônica/tratamento farmacológico , Itália
20.
Ann Med Surg (Lond) ; 86(2): 1191-1195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333241

RESUMO

Introduction and importance: Sodium channel myotonia (SCM) belongs to the group of sodium channelopathies with mutations involving SCN4A gene. The main feature of sodium channel myotonia is pure myotonia without episodes of weakness or paralysis. One of the sodium channel myotonia has been classified as acetazolamide-responsive myotonia because of the effectiveness of acetazolamide as an antimyotonic drug. Case presentation: The child presented with generalized muscle hypertrophy and stiffness involving arms, thighs, calves, chest, and back muscles with unusually prominent trapezius muscle. The parents described the warm-up phenomenon as an improvement in stiffness as the day passes and with repetitive action. Percussion myotonia was illustrated in the thenar eminence and trapezius muscle. Characteristic 'dive-bomber' sound was present in electromyography, and whole-exome sequencing revealed a novel Ile239Thr mutation in the SCN4A gene. Acetazolamide was prescribed for the condition, and regular follow-up shows an excellent clinical response. Clinical discussion: This case presents a pure myotonic phenotype without episodes of weakness or paralysis. Generalized myotonia with muscle hypertrophy and demonstrating warm-up phenomenon resembles myotonia congenita (a chloride channelopathy). However, genetic analysis revealed a novel Ile239Thr mutation involving SCN4A gene indicating this case to be a sodium channelopathy. Conclusion: This case limelight sodium channel myotonia with a novel Ile239Thr mutation in SCN4A gene that phenotypically resembles myotonia congenita but genetically belongs to sodium channelopathy highlighting the poor correlation between genotypes and phenotypes in non-dystrophic myotonia. Acetazolamide can be a safe and cost-effective antimyotonic drug in sodium channel myotonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA