Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Indian J Thorac Cardiovasc Surg ; 40(Suppl 1): 61-68, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827558

RESUMO

Stroke and intracranial hemorrhage (ICH) are serious complications that are difficult to manage during surgery for active infectious endocarditis (AIE). Relevant society guidelines still recommend delaying the cardiac surgery for AIE with ICH for 4 weeks. Some early studies indicated that the mortality rate decreases when cardiac surgery for ICH is delayed. In contrast, some reported that surgical intervention should not be delayed if an early operation is demanded, even in patients with ICH. The current literature on early vs. late surgery for infectious endocarditis (IE) with ICH is conflicting. Changing the cardiopulmonary bypass (CPB) strategy might be necessary to improve the surgical outcomes of IE with ICH. Some studies reported that cardiac surgery using nafamostat mesylate (NM) as an alternative anticoagulant during CPB was performed successfully. The combination of NM and low-dose heparin was beneficial for early surgery in patients with AIE complicated by cerebral infarction and ICH, without worsening cerebral lesions. In this report, we review and discuss the management of CPB in patients with ischemic and hemorrhagic stroke during surgery for AIE.

2.
Int Immunopharmacol ; 134: 112190, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703569

RESUMO

Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.


Assuntos
Benzamidinas , Guanidinas , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Traumatismos da Medula Espinal , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Camundongos , Guanidinas/farmacologia , Guanidinas/uso terapêutico , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Catepsina B/metabolismo
3.
Biochem Biophys Res Commun ; 710: 149843, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593617

RESUMO

The success rate of flap tissue reconstruction has increased in recent years owing to advancements in microsurgical techniques. However, complications, such as necrosis, are still more prevalent in diabetic patients compared to non-diabetic individuals, presenting an ongoing challenge. To address this issue, many previous studies have examined vascular anastomoses dilation and stability, primarily concerning surgical techniques or drugs. In contrast, in the present study, we focused on microvascular damage of the peripheral microvessels in patients with diabetes mellitus and the preventative impact of nafamostat mesylate. Herein, we aimed to investigate the effects of hyperglycemia on glycocalyx (GCX) levels in mice with type 2 diabetes. We examined the endothelial GCX (eGCX) in skin flap tissue of 9-12-week-old type 2 diabetic mice (db/db mice) using a perforator skin flap and explored treatment with nafamostat mesylate. The growth rates were compared after 1 week. Heterotype (db/+) mice were used as the control group. Morphological examination of postoperative tissues was performed at 1, 3, 5, and 7 days post-surgery. In addition, db/db mice were treated with 30 mg/kg/day of nafamostat mesylate daily and were evaluated on postoperative day 7. Seven days after surgery, all db/db mice showed significant partial flap necrosis. Temporal observation of the skin flaps revealed a stasis-like discoloration and necrosis starting from the contralateral side of the remaining perforating branch. The control group did not exhibit flap necrosis, and the flap remained intact. In the quantitative assessment of endothelial glycans using lectins, intensity scoring showed that the eGCX in the db/db group was significantly thinner than that in the db/+ group. These results were consistent with the scanning electron microscopy findings. In contrast, treatment with nafamostat mesylate significantly improved the flap engraftment rate and suppressed eGCX injury. In conclusion, treatment with nafamostat mesylate improves the disrupted eGCX structure of skin flap tissue in db/db mice, potentially ameliorating the impaired capillary-to-venous return in the skin flap tissue.


Assuntos
Benzamidinas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Guanidinas , Doenças Vasculares , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Glicocálix , Modelos Animais de Doenças , Camundongos Endogâmicos , Necrose/tratamento farmacológico
4.
Clin Microbiol Infect ; 30(6): 743-754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331253

RESUMO

BACKGROUND: Synthetic serine protease inhibitors block the cellular enzyme transmembrane protease serine 2, thus preventing SARS-CoV-2 cell entry. There are two relevant drugs in this class, namely, nafamostat (intravenous formulation) and camostat (oral formulation). OBJECTIVE: To determine whether transmembrane protease serine 2 inhibition with nafamostat or camostat is associated with a reduced risk of 30-day all-cause mortality in adults with COVID-19. DATA SOURCES: Scientific databases and clinical trial registry platforms. STUDY ELIGIBILITY CRITERIA, INTERVENTIONS, AND PARTICIPANTS: Preprints or published randomized clinical trials (RCTs) of nafamostat or camostat vs. usual care or placebo in adults requiring treatment for COVID-19. METHODS OF DATA SYNTHESIS AND RISK-OF-BIAS ASSESSMENT: The primary outcome of the meta-analysis was 30-day all-cause mortality. Secondary outcomes included time to recovery, adverse events, and serious adverse events. Risk of bias (RoB) was assessed using the revised Cochrane RoB 2 tool for individually randomized trials. Meta-analysis was conducted in the R package meta (v7.0-0) using inverse variance and random effects. Protocol registration number was INPLASY202320120. RESULTS: Twelve RCTs were included. Overall, the number of available patients was small (nafamostat = 387; camostat = 1061), the number of enrolled patients meeting the primary outcome was low (nafamostat = 12; camostat = 13), and heterogeneity was high. In hospitalized adults, we did not identify differences in 30-day all-cause mortality (risk ratio [95% CI]: 0.58 [0.19, 1.80], p 0.34; I2 = 0%; n = 6) and time to recovery (mean difference [95% CI]: 0.08 days [-0.74, 0.89], p 0.86; n = 2) between nafamostat vs. usual care; and for 30-day all-cause mortality (risk ratio [95% CI]: 0.99 [0.31, 3.18], p 0.99; n = 2) between camostat vs. placebo. CONCLUSION: The RCT evidence is inconclusive to determine whether there is a mortality reduction and safety with either nafamostat or camostat for the treatment of adults with COVID-19. There were high RoB, small sample size, and high heterogeneity between RCTs.


Assuntos
Benzamidinas , Tratamento Farmacológico da COVID-19 , Guanidinas , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Serina Endopeptidases , Inibidores de Serina Proteinase , Adulto , Humanos , Benzamidinas/uso terapêutico , COVID-19/mortalidade , Ésteres , Gabexato/uso terapêutico , Gabexato/análogos & derivados , Guanidinas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Inibidores de Serina Proteinase/uso terapêutico , Inibidores de Serina Proteinase/efeitos adversos , Resultado do Tratamento
5.
BMC Nephrol ; 25(1): 69, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408970

RESUMO

BACKGROUND: Nafamostat mesylate is an anticoagulant used for critically ill patients during continuous kidney replacement therapy (CKRT), characterised by its short half-life. However, its optimal dosage remains unclear. This study aimed to explore the optimal dosage of nafamostat mesylate during CKRT. METHODS: We conducted a two-centre observational study. We screened all critically ill adult patients who required CKRT in the intensive care unit (ICU) from September 2013 to August 2021; we included patients aged ≥ 18 years who received nafamostat mesylate during CKRT. The primary outcome was filter life, defined as the time from CKRT initiation to the end of the first filter use due to filter clotting. The secondary outcomes included safety and other clinical outcomes. The survival analysis of filter patency by the nafamostat mesylate dosage adjusted for bleeding risk and haemofiltration was performed using a Cox proportional hazards model. RESULTS: We included 269 patients. The mean dose of nafamostat mesylate was 15.8 mg/hr (Standard deviation (SD), 8.8; range, 5.0 to 30.0), and the median filter life was 18.3 h (Interquartile range (IQR), 9.28 to 36.7). The filter survival analysis showed no significant association between the filter life and nafamostat mesylate dosage (hazard ratio 1.12; 95 CI 0.74-1.69, p = 0.60) after adjustment for bleeding risk and addition of haemofiltration to haemodialysis. CONCLUSIONS: We observed no dose-response relationship between the dose of nafamostat mesylate (range: 5 to 30 mg/h) and the filter life during CKRT in critically ill patients. The optimal dose to prevent filter clotting safely needs further study in randomised controlled trials. TRIAL REGISTRATION: Not applicable.


Assuntos
Anticoagulantes , Benzamidinas , Terapia de Substituição Renal Contínua , Estado Terminal , Guanidinas , Humanos , Masculino , Feminino , Estado Terminal/terapia , Pessoa de Meia-Idade , Idoso , Guanidinas/administração & dosagem , Anticoagulantes/administração & dosagem , Relação Dose-Resposta a Droga , Injúria Renal Aguda/terapia
6.
Cureus ; 16(1): e52641, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38380196

RESUMO

Being a dialysis patient is one of the risks for severe coronavirus disease 2019 (COVID-19) cases. In addition, there have been many reports of coagulation abnormalities in severe COVID-19 cases; these also make dialysis management more difficult. In this study, we report a case of severe COVID-19 in a hemodialysis patient who had coagulation in the dialysis circuit with unfractionated heparin (UFH), which could be managed without intracircuit obstruction when nafamostat mesylate (NM) was used in combination with unfractionated heparin.

7.
Tissue Cell ; 87: 102319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359705

RESUMO

Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.


Assuntos
Benzamidinas , Guanidinas , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Reposicionamento de Medicamentos , Sistemas Microfisiológicos , Antivirais/farmacologia , Pulmão
8.
J Pain ; 25(6): 104462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211844

RESUMO

Oxaliplatin, a platinum-based anticancer drug, is associated with peripheral neuropathy (oxaliplatin-induced peripheral neuropathy, OIPN), which can lead to worsening of quality of life and treatment interruption. The endothelial glycocalyx, a fragile carbohydrate-rich layer covering the luminal surface of endothelial cells, acts as an endothelial gatekeeper and has been suggested to protect nerves, astrocytes, and other cells from toxins and substances released from the capillary vessels. Mechanisms underlying OIPN and the role of the glycocalyx remain unclear. This study aimed to define changes in the three-dimensional ultrastructure of capillary endothelial glycocalyx near nerve fibers in the hind paws of mice with OIPN. The mouse model of OPIN revealed disruption of the endothelial glycocalyx in the peripheral nerve compartment, accompanied by vascular permeability, edema, and damage to the peripheral nerves. To investigate the potential treatment interventions, nafamostat mesilate, a glycocalyx protective agent was used in tumor-bearing male mice. Nafamostat mesilate suppressed mechanical allodynia associated with neuropathy. It also prevented intra-epidermal nerve fiber loss and improved vascular permeability in the peripheral paws. The disruption of endothelial glycocalyx in the capillaries that lie within peripheral nerve bundles is a novel finding in OPIN. Furthermore, these findings point toward the potential of a new treatment strategy targeting endothelial glycocalyx to prevent vascular injury as an effective treatment of neuropathy as well as of many other diseases. PERSPECTIVE: OIPN damages the endothelial glycocalyx in the peripheral capillaries, increasing vascular permeability. In order to prevent OIPN, this work offers a novel therapy approach that targets endothelial glycocalyx.


Assuntos
Antineoplásicos , Glicocálix , Oxaliplatina , Animais , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/patologia , Oxaliplatina/toxicidade , Camundongos , Masculino , Antineoplásicos/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Capilares/efeitos dos fármacos , Capilares/patologia , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/patologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Camundongos Endogâmicos C57BL
9.
Jpn J Infect Dis ; 77(3): 182-186, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38296543

RESUMO

Nafamostat mesylate, a synthetic serine protease inhibitor, has been shown to have antiviral activity against SARS-CoV-2 and anticoagulant properties that may be beneficial in the treatment of COVID-19. We conducted a meta-analysis to evaluate the effectiveness and safety of nafamostat mesylate for the treatment of COVID-19. PubMed, Embase, Cochrane Library, Scopus, Web of Science, medRxiv, and bioRxiv were searched up to July 2023 for studies comparing the outcomes of nafamostat mesylate treatment and no nafamostat mesylate treatment in patients with COVID-19. Mortality, disease progression, and adverse events were analyzed. Six studies involving 16,195 patients were included in the analysis. Meta-analysis revealed no significant difference in mortality (odds ratio [OR]: 0.88, 95% CI: 0.20-3.75, P = 0.86) or disease progression (OR: 2.76, 95% CI: 0.31-24.68, P = 0.36) between groups. However, nafamostat mesylate was associated with an increased risk of hyperkalemia (OR: 7.15, 95% CI: 2.66-19.24, P < 0.0001). Nafamostat mesylate did not improve mortality or morbidity in hospitalized patients with COVID-19. The risk of hyperkalemia is a serious concern that requires monitoring and preventive measures. Further research in different COVID-19 populations is required.


Assuntos
Benzamidinas , Tratamento Farmacológico da COVID-19 , COVID-19 , Guanidinas , SARS-CoV-2 , Humanos , Benzamidinas/uso terapêutico , Guanidinas/uso terapêutico , Guanidinas/efeitos adversos , COVID-19/mortalidade , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Resultado do Tratamento , Progressão da Doença , Hiperpotassemia/tratamento farmacológico
10.
JA Clin Rep ; 10(1): 6, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285208

RESUMO

BACKGROUND: Andexanet alfa, an anti-Xa inhibitor antagonist, induces heparin resistance. Here, we report a case of successful management of cardiopulmonary bypass with andexanet alfa-induced heparin resistance using nafamostat mesylate. CASE PRESENTATION: An 84-year-old female, with Stanford type A acute aortic dissection, underwent an emergency surgery for total aortic arch replacement. Andexanet alfa 400 mg was administered preoperatively to antagonize edoxaban, an oral Xa inhibitor. Heparin 300 IU/kg was administered before cardiopulmonary bypass, and the activated clotting time (ACT) was 291 s. The ACT was 361 s after another administration of heparin 200 IU/kg. According to our routine therapy for heparin resistance, an initial dose of nafamostat mesylate 10 mg was administered intravenously, followed by a continuous infusion of 20-30 mg/h. The ACT was prolonged to 500 s, and cardiopulmonary bypass was successfully established thereafter. CONCLUSIONS: This case report presents the successful management of cardiopulmonary bypass with andexanet alfa-induced heparin resistance using nafamostat mesilate. This report presents the successful management of cardiopulmonary bypass with andexanet alfa-induced heparin resistance using nafamostat mesilate.

11.
World J Clin Cases ; 12(1): 68-75, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38292627

RESUMO

BACKGROUND: Recent studies on dialysis anticoagulation therapy in patients with renal failure have shown that Nafamostat mesylate, a broad-spectrum potent serine protease inhibitor, has strong anticoagulation and anti-fiber activity. AIM: To evaluate the efficacy and safety of Nafamostat mesylate in patients with end-stage renal failure. METHODS: Seventy-five patients with end-stage renal failure who received hemodialysis at our hospital between January 2020 and August 2021 were selected and divided into the observation group (Nafamostat mesylate for injection, n = 33) and control group (heparin sodium injection, n = 32). General patient data, indicators of clinical efficacy, dialyzer hemocoagulation parameters, coagulation function indices, and hemoglobin concentration and platelet count before and after treatment, and the occurrence of adverse reactions after treatment were compared between the two groups. RESULTS: The two groups showed no significant differences in general patient data (P > 0.05). The post-treatment effectiveness rate in the control group was lower than that in the observation group (P < 0.05). The two groups showed no significant difference in the number of patients in grade I (P > 0.05), while the number of patients in grade 0 was lower in the control group, and the number of patients in grades II and III was higher in the control group (P < 0.05). The post-treatment prothrombin time, activated partial thromboplastin time, thrombin time, and international normalized ratio values in the control group were higher than those in the observation group, while the fibrinogen level in the control group was lower than that in the observation group (P < 0.05). The two groups showed no significant difference in the platelet count and hemoglobin level before and after treatment (P > 0.05). The total number of post-treatment adverse reactions in the observation group was lower than that in the control group (P < 0.05). CONCLUSION: Treatment of patients showing end-stage renal failure with Nafamostat mesylate can significantly improve therapeutic efficacy and has high safety and clinical value.

12.
Eur J Med Res ; 29(1): 72, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245802

RESUMO

PURPOSE: The choice of continuous renal replacement therapy (CRRT) anticoagulation program for patients at high risk of bleeding has always been a complex problem in clinical practice. Clinical regimens include regional citrate anticoagulation (RCA) and nafamostat mesylate (NM). This study aimed to evaluate the efficacy and safety of these two anticoagulants for CRRT in patients at high risk of bleeding to guide their clinical use better. PATIENTS AND METHODS: Between January 2021 and December 2022, 307 patients were screened for this study. Forty-six patients were finally enrolled: 22 in the regional citrate anticoagulation group and 24 in the nafamostat mesylate group. We collected patients' baseline characteristics, laboratory indicators before CRRT, and CRRT-related data. We then performed a statistical analysis of the data from both groups of patients. RESULTS: In our study, the baseline characteristics did not differ significantly between the two groups; the baseline laboratory indicators before CRRT of patients in the two groups were not significantly different. The duration of CRRT was 600 min in the regional citrate anticoagulation (RCA) group, 615 min in the nafamostat mesylate (NM) group; the success rate was 90.7% in the RCA group, and 85.6% in the NM group, the anticoagulant efficacy between the two groups was comparable. There was no significant difference in the safety of anticoagulation between the two groups. We used Generalized Estimating Equations (GEE) to test whether different anticoagulation methods significantly affected the success rate of CRRT and found no statistical difference between RCA and NM. CONCLUSION: Our study suggests that nafamostat mesylate's anticoagulant efficacy and safety are not inferior to regional citrate anticoagulation for continuous renal replacement therapy in patients at high risk of bleeding.


Assuntos
Injúria Renal Aguda , Benzamidinas , Terapia de Substituição Renal Contínua , Guanidinas , Humanos , Ácido Cítrico/uso terapêutico , Estudos Retrospectivos , Anticoagulantes/efeitos adversos , Hemorragia , Citratos/uso terapêutico , Injúria Renal Aguda/induzido quimicamente
13.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958669

RESUMO

N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.


Assuntos
Pentamidina , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Pentamidina/metabolismo , Guanidinas/farmacologia , Guanidinas/metabolismo , Hipocampo/metabolismo , Células Cultivadas , N-Metilaspartato/metabolismo
14.
J Control Release ; 364: 654-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939853

RESUMO

Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.


Assuntos
COVID-19 , Humanos , Camundongos , Animais , Lipossomos , Reposicionamento de Medicamentos , Pandemias , Distribuição Tecidual , Pulmão , SARS-CoV-2
15.
J Clin Med ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892756

RESUMO

Even though SARS-CoV-2 was declared by WHO as constituting no longer a public health emergency, the development of effective treatments against SARS-CoV-2 infection remains a critical issue to prevent complications, particularly in fragile patients. The protease inhibitor nafamostat, currently used in Japan and Korea for pancreatitis, owing to its anticoagulant properties for disseminated intravascular coagulation (DIC), is appealing for the treatment of COVID-19 infection, because it potently inhibits the transmembrane protease serine 2 (TMPRSS2) that, after virus binding to ACE-2, allows virus entry into the cells and replication. Moreover, it could prevent the DIC and pulmonary embolism frequently associated with COVID-19 infection. The goal of the RAndomized Clinical Trial Of NAfamostat (RACONA) study, designed as a prospective randomized, double-blind placebo-controlled clinical trial, was to investigate the efficacy and safety of nafamostat mesylate (0.10 mg/kg/h iv for 7 days), on top of the optimal treatment, in COVID-19 hospitalized patients. We could screen 131 patients, but due to the predefined strict inclusion and exclusion criteria, only 15 could be randomized to group 1 (n = 7) or group 2 (n = 8). The results of an ad interim safety analysis showed similar overall trends for variables evaluating renal function, coagulation, and inflammation. No adverse events, including hyperkalemia, were found to be associated with nafamostat. Thus, the RACONA study showed a good safety profile of nafamostat, suggesting that it could be usefully used in COVID-19 hospitalized patients.

16.
Int J Biol Macromol ; 253(Pt 7): 127379, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838109

RESUMO

The coronavirus, a subfamily of the coronavirinae family, is an RNA virus with over 40 variations that can infect humans, non-human mammals and birds. There are seven types of human coronaviruses, including SARS-CoV-2, is responsible for the recent COVID-19 pandemic. The current study is focused on the identification of drug molecules for the treatment of COVID-19 by targeting human proteases like transmembrane serine protease 2 (TMPRSS2), furin, cathepsin B, and a nuclear receptor named farnesoid X receptor (FXR). TMPRSS2 and furin help in cleaving the spike protein of the SARS-CoV-2 virus, while cathepsin B plays a critical role in the entry and pathogenesis. FXR, on the other hand, regulates the expression of ACE2, and its inhibition can reduce SARS-CoV-2 infection. By inhibiting these four protein targets with non-toxic inhibitors, the entry of the infectious agent into host cells and its pathogenesis can be obstructed. We have used the BioSolveIT suite for pharmacophore-based computational drug designing. A total of 1611 ligands from the ligand library were docked with the target proteins to obtain potent inhibitors on the basis of pharmacophore. Following the ADMET analysis and protein ligand interactions, potent and druggable inhibitors of the target proteins were obtained. Additionally, toxic substructures and the less toxic route of administration of the most potent inhibitors in rodents were also determined computationally. Compounds namely N-(diaminomethylene)-2-((3-((1R,3R)-3-(2-(methoxy(methyl)amino)-2-oxoethyl)cyclopentyl)propyl)amino)-2-oxoethan-1-aminium (26), (1R,3R)-3-(((2-ammonioethyl)ammonio)methyl)-1-((4-propyl-1H-imidazol-2-yl)methyl)piperidin-1-ium (29) and (1R,3R)-3-(((2-ammonioethyl)ammonio)methyl)-1-((1-propyl-1H-pyrazol-4-yl)methyl)piperidin-1-ium (30) were found as the potent inhibitors of TMPRSS2, whereas, 1-(1-(1-(1H-tetrazol-1-yl)cyclopropane-1­carbonyl)piperidin-4-yl)azepan-2-one (6), (2R)-4-methyl-1-oxo-1-((7R,11S)-4-oxo-6,7,8,9,10,11-hexahydro-4H-7,11-methanopyrido[1,2-a]azocin-9-yl)pentan-2-aminium (12), 4-((1-(3-(3,5-dimethylisoxazol-4-yl)propanoyl)piperidin-4-yl)methyl)morpholin-4-ium (13), 1-(4,6-dimethylpyrimidin-2-yl)-N-(3-oxocyclohex-1-en-1-yl)piperidine-4-carboxamide (14), 1-(4-(1,5-dimethyl-1H-1,2,4-triazol-3-yl)piperidin-1-yl)-3-(3,5-dimethylisoxazol-4-yl)propan-1-one (25) and N,N-dimethyl-4-oxo-4-((1S,5R)-8-oxo-5,6-dihydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(2H,4H,8H)-yl)butanamide (31) inhibited the FXR preferentially. In case of cathepsin B, N-((5-benzoylthiophen-2-yl)methyl)-2-hydrazineyl-2-oxoacetamide (2) and N-([2,2'-bifuran]-5-ylmethyl)-2-hydrazineyl-2-oxoacetamide (7) were identified as the most druggable inhibitors whereas 1-amino-2,7-diethyl-3,8-dioxo-6-(p-tolyl)-2,3,7,8-tetrahydro-2,7-naphthyridine-4­carbonitrile (5) and (R)-6-amino-2-(2,3-dihydroxypropyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (20) were active against furin.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Serina Proteases , Furina , Catepsina B , Ligantes , Pandemias , Internalização do Vírus , Mamíferos
17.
Heliyon ; 9(9): e19811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809476

RESUMO

Bromadiolone, as a second-generation coumarin anticoagulant rodenticide, may accidently cause harm to humans and non-target animals when overused or misused due to its high toxicity and long-lasting effects. In some severe cases such as the presence of active bleeding, treatment should involve the administration of hemoperfusion therapy. Nafamostat mesylate is a synthesized protease inhibitor that inhibits most factors in the coagulation process, preventing clotting and ensuring smooth blood flow during the procedure. Nafamostat mesylate helps maintain the efficacy and safety of hemoperfusion treatment. Despite its wide application in Japan, the clinical practice and research of nafamostat mesylate are limited in China, especially for patients undergoing maintenance hemodialysis. This paper reports two cases of bromadiolone poisoning and describes the treatment procedure and therapeutic effect of anticoagulation in hemoperfusion therapy with nafamostat mesylate.

18.
Inflamm Res ; 72(9): 1919-1932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37725105

RESUMO

OBJECTIVE: Nafamostat mesilate (NM), a synthetic broad-spectrum serine protease inhibitor, has been commonly used for treating acute pancreatitis (AP) and other inflammatory-associated diseases in some East Asia countries. Although the potent inhibitory activity against inflammation-related proteases (such as thrombin, trypsin, kallikrein, plasmin, coagulation factors, and complement factors) is generally believed to be responsible for the anti-inflammatory effects of NM, the precise target and molecular mechanism underlying its anti-inflammatory activity in AP treatment remain largely unknown. METHODS: The protection of NM against pancreatic injury and inhibitory effect on the NOD-like receptor protein 3 (NLRP3) inflammasome activation were investigated in an experimental mouse model of AP. To decipher the molecular mechanism of NM, the effects of NM on nuclear factor kappa B (NF-κB) activity and NF-κB mediated NLRP3 inflammasome priming were examined in lipopolysaccharide (LPS)-primed THP-1 cells. Additionally, the potential of NM to block the activity of histone deacetylase 6 (HDAC6) and disrupt the association between HDAC6 and NLRP3 was also evaluated. RESULTS: NM significantly suppressed NLRP3 inflammasome activation in the pancreas, leading to a reduction in pancreatic inflammation and prevention of pancreatic injury during AP. NM was found to interact with HDAC6 and effectively inhibit its function. This property allowed NM to influence HDAC6-dependent NF-κB transcriptional activity, thereby blocking NF-κB-driven transcriptional priming of the NLRP3 inflammasome. Furthermore, NM exhibited the potential to interfere the association between HDAC6 and NLRP3, impeding HDAC6-mediated intracellular transport of NLRP3 and ultimately preventing NLRP3 inflammasome activation. CONCLUSIONS: Our current work has provided valuable insight into the molecular mechanism underlying the immunomodulatory effect of NM in the treatment of AP, highlighting its promising application in the prevention of NLRP3 inflammasome-associated inflammatory pathological damage.


Assuntos
Inflamassomos , Pancreatite , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/prevenção & controle , NF-kappa B/metabolismo , Ceruletídeo/efeitos adversos , Proteínas NLR , Desacetilase 6 de Histona/uso terapêutico , Doença Aguda , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
19.
Viruses ; 15(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37632086

RESUMO

The successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention that is implementable alongside vaccination programmes. Nafamostat is a serine protease inhibitor that inhibits SARS-CoV-2 entry in vitro, but it has not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and has an extremely short plasma half-life. This study sought to determine whether intranasal dosing of nafamostat at 5 mg/kg twice daily was able to prevent the airborne transmission of SARS-CoV-2 from infected to uninfected Syrian Golden hamsters. SARS-CoV-2 RNA was detectable in the throat swabs of the water-treated control group 4 days after cohabitation with a SARS-CoV-2 inoculated hamster. However, throat swabs from the intranasal nafamostat-treated hamsters remained SARS-CoV-2 RNA negative for the full 4 days of cohabitation. Significantly lower SARS-CoV-2 RNA concentrations were seen in the nasal turbinates of the nafamostat-treated group compared to the control (p = 0.001). A plaque assay quantified a significantly lower concentration of infectious SARS-CoV-2 in the lungs of the nafamostat-treated group compared to the control (p = 0.035). When taken collectively with the pathological changes observed in the lungs and nasal mucosa, these data are strongly supportive of the utility of intranasally delivered nafamostat for the prevention of SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , Cricetinae , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Viral , Quimioprevenção , Mesocricetus
20.
Ther Apher Dial ; 27(6): 1010-1016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605563

RESUMO

INTRODUCTION: With population aging and lifestyle changes, the number of patients with chronic limb-threatening ischemia (CLTI) is increasing, and refractory or recurrent lesions are more common, especially in chronic dialysis patients. In March 2021, a new type of adsorptive cellulose bead column immobilized with dextran sulfate and L-tryptophan for direct hemoperfusion (DHP) was approved by Japan's medical insurance system as a treatment for CLTI. METHODS: We retrospectively analyzed 17 cases of CLTI in dialysis patients treated with DHP using the novel column (Rheocarna) (DHP-R) at our hospital from May 2021 to October 2022. The short-term of efficacy of DHP-R was judged qualitatively by the foot care team every 2 weeks based on the assessment of skin color, warmth, ulcer epithelialization or shrinkage of the ulcer area, and foot pain. The final judgment of efficacy was made after the final DHP-R session. RESULTS: The median age of patients was 66 years, the median dialysis duration was 10 years, 15 cases (88%) were male, and 15 cases (88%) had diabetes. The median total number of sessions was eight. In comparing the groups in which DHP-R was effective and ineffective, there was no significant difference in any factors including patient background data (i.e., age, diabetes, low-density lipoprotein cholesterol, hemoglobin, dialysis duration, etc.), type of anticoagulants, and presence of episodes of blood pressure drop or circuit clotting during session. Three cases with symptomatic hypotension during the session and two cases with circuit clotting that did not improve with increased heparin dose all resolved immediately after changing the anticoagulant from heparin to nafamostat mesylate (NM). CONCLUSION: Identification of patients' characteristics in which DHP-R is favorable and some reliable index that allow a rapid decision to continue DHP-R are needed. In addition, validating whether the use of NM as anticoagulant affects the efficacy of DHP-R for CTLI treatment remains a challenge to resolve.


Assuntos
Diabetes Mellitus , Hemoperfusão , Humanos , Masculino , Idoso , Feminino , Polimixina B , Antibacterianos/uso terapêutico , Isquemia Crônica Crítica de Membro , Estudos Retrospectivos , Úlcera/tratamento farmacológico , Úlcera/etiologia , Diálise Renal , Anticoagulantes/uso terapêutico , Heparina , Diabetes Mellitus/tratamento farmacológico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA