Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.082
Filtrar
1.
J Biomater Sci Polym Ed ; : 1-15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949409

RESUMO

The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (Tm). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.

2.
Chemosphere ; : 142805, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996979

RESUMO

This study presents the green synthesis and multifunctional properties of Cu/NiO nanocomposites (NCs) fabricated with varying ratios (90:10, 80:20, and 70:30) using Commelina benghalensis leaf extract. X-ray diffraction (XRD) analysis confirmed the polycrystalline nature of the NCs, revealing crystallite sizes of 13.62, 13.22, and 7.14 nm. Scanning electron microscopy (SEM) showed rod-shaped and agglomerated particles with sizes ranging from 17.64 to 22.97 nm. Energy-dispersive X-ray spectroscopy (EDX) verified the elemental composition of copper, nickel, oxygen, and carbon. UV-visible spectroscopy determined the energy band gaps to be in the range of 1.24-1.56 eV. Fourier-transform infrared spectroscopy (FT-IR) indicated the presence of bioactive compounds responsible for the reduction of precursor metal salts. The Cu/NiO NCs exhibited remarkable antimicrobial activity, with the 90:10 ratio showing the highest zones of inhibition at 32.76±0.23 mm, 18.66±0.33 mm, and 14.36±0.32 mm against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, respectively. Additionally, the 70:30 Cu/NiO NCs demonstrated superior antioxidant activity, with a radical scavenging efficiency of 83.22%, closely approaching that of ascorbic acid (96.98%). Photocatalytic evaluations revealed that the NCs were highly effective in degrading environmental pollutants, achieving 97.69% degradation of malachite green and 96.52% of congo red under UV light irradiation. The novelty of this work lies in the use of Commelina benghalensis leaf extract as a sustainable and eco-friendly reducing and stabilizing agent for synthesizing Cu/NiO NCs, offering a green alternative to conventional methods. The synergistic effects between Cu and NiO in the different compositions (90:10, 80:20, and 70:30) enhanced the overall antimicrobial and photocatalytic activities, highlighting their potential for environmental remediation applications.

3.
Sci Rep ; 14(1): 15885, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987354

RESUMO

Photocatalytic degradation of several harmful organic compounds has been presented as a potential approach to detoxify water in recent decades. Trypan Blue (TB) is an acidic azo dye used to distinguish live cells from dead ones and it's classified as a carcinogenic dye. In this study, silver phosphate (Ag3PO4) nanoparticles and novel Ag3PO4/graphene/SiO2 nanocomposite have been successfully prepared via simple precipitation method. Afterward, their physical properties, chemical composition, and morphology have been characterized using SEM, EDS, TEM, SAED, BET, XRD, FTIR and UV-VIS spectroscopy. The specific surface area of Ag3PO4 and Ag3PO4/G/SiO2 nanocomposite were reported to be 1.53 and 84.97 m2/g, respectively. The band gap energy of Ag3PO4 and Ag3PO4/G/SiO2 nanocomposite was measured to be 2.4 and 2.307 eV, respectively. Photocatalytic degradation of Trypan blue (TB) was studied at different parameters such as pH, catalyst dosage, initial concentration, and contact time. The results showed that, at initial dye concentration of 20 ppm, pH = 2, and using 0.03 g of Ag3PO4/G/SiO2 as a photocatalyst, the degradation percent of TB dye in the aqueous solution was 98.7% within 10 min of light exposure. Several adsorption isotherms such as Langmuir, Freundlich, and Temkin adsorption isotherms have been tested in addition to the photocatalytic degradation kinetics. Both catalysts were found to follow the Langmuir isotherm model and pseudo-second-order kinetic model. Finally, the possible photocatalytic performance mechanism of Ag3PO4/G/SiO2 was proposed.

4.
Nano Lett ; 24(27): 8248-8256, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949190

RESUMO

Fast emitting polymeric scintillators are requested in advanced applications where high speed detectors with a large signal-to-noise ratio are needed. However, their low density implies a weak stopping power of high energy radiation and thus a limited light output and sensitivity. To enhance their performance, polymeric scintillators can be loaded with dense nanoparticles (NPs). We investigate the properties of a series of polymeric scintillators by means of photoluminescence and scintillation spectroscopy, comparing standard scintillators with a composite system loaded with dense hafnium dioxide (HfO2) NPs. The nanocomposite shows a scintillation yield enhancement of +100% with an unchanged time response. We provide for the first time an interpretation of this effect, pointing out the local effect of NPs in the generation of emissive states upon interaction with ionizing radiation. The obtained results indicate that coupling fast conjugated emitters with optically inert dense NPs could lead to surpassing the actual limits of pure polymeric scintillators.

5.
Sci Rep ; 14(1): 16403, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013967

RESUMO

Conductive polymer nanocomposites for electromagnetic interference (EMI) shielding are important materials that can be combat the increasingly dangerous radiation pollution arising from electronic equipment and our surrounding environment. In this work, we have synthesized polyaniline-copper nanoparticles (PANI-Cu NPs) by the copper salt based oxidative polymerization method at room temperature and then added with different concentration (0, 1, 3 and 5 wt%) in polystyrene polymer forming PS/ PANI-Cu nanocomposites films by means of the traditional solution casting technique. The formed PANI-Cu NPs were investigated by UV/Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and SEM/EDX elemental mapping techniques. On the other hand, the prepared PS/PANI-Cu nanocomposites films were evaluated by UV and SEM, the mechanical properties of the nanocomposites films were evaluated and showed an improvement by added PANI-Cu NPs up to 3 wt% and 50 kGy gamma exposure dose. The PS/PANI-Cu nanocomposites films were examined as electromagnetic interference shielding material. Electromagnetic shielding effectiveness of the produced nanocomposites were tested in the X-band of the radio frequency range namely from 8 to 12 GHz using the vector network analyzer (VNA) and a proper wave guide. All samples were studied before and after 50 kGy gamma-ray irradiation under the same condition of pressure and temperature. The results showed that the nanocomposites have improved shielding properties.

6.
Luminescence ; 39(7): e4817, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39019841

RESUMO

Alternate antibiotics developed through the involvement of nanomaterials are gaining interest due to their economical and lower toxicity concerns. A newly developed biopolymer-based polyvinylpyrrolidone/zinc oxide (PVP/ZnO) nanocomposite (NCs) was efficiently synthesized by an environment-friendly approach, utilizing onion and garlic peel extract as a bio-surfactant, zinc acetate as the source, PVP as the stabilizing agent, and sodium hydroxide as the precipitant. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) investigations verified the crystalline properties of ZnO, PVP, and PVP/ZnO-based NCs. The structure of the biopolymer-linked ZnO particles interpolated inside the PVP array was seen to have a layered and flaky structure, as validated by field emission scanning electron microscopy (FE-SEM) analysis, which revealed its occurrence in the nanometer range. The XRD examination verified that the surface topographical image of PVP/ZnO NCs had an average thickness of 21 nm. The PVP/ZnO nanocrystals demonstrated exceptional photocatalytic efficacy, with a breakdown rate of 88% and almost 92% for the methylene blue dye. Therefore, the PVP/ZnO matrix exhibits superior antibacterial activity compared to other extracts, resulting in greater microbial suppression. The results above indicate that the ZnO-intercalated PVP array has a stronger reinforcing effect than other components. Hence, PVP/ZnO nanocrystals exhibit enormous potential as a favorable substance for environmental and biomedical intentions.


Assuntos
Antibacterianos , Nanocompostos , Processos Fotoquímicos , Povidona , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Povidona/química , Nanocompostos/química , Catálise , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Luminescência , Tamanho da Partícula , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Azul de Metileno/química
7.
J Colloid Interface Sci ; 676: 396-407, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39033674

RESUMO

HYPOTHESIS: Pyrene derivatives are effective motifs when designing graphene-philic surfactants, enabling the use of hydrophobic graphene-based nanomaterials in waterborne formulations. Hence, novel pyrene end-functionalized polymeric stabilizers show promise for stabilizing aqueous graphene nanomaterial dispersions, and offer benefits over traditional small molecule surfactants. EXPERIMENTS: Pyrene end-functionalized poly(methacrylic acid) (Py-PMAAn, where n = 68 to 128) was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization of MAA using a pyrene-containing RAFT chain-transfer agent. These polymers were evaluated as aqueous graphene nanoplatelet (GNP) stabilizers. Subsequently, polymer-stabilized GNPs were formulated into film-forming polymer latex dispersions and the properties of the resulting GNP-containing films measured. FINDINGS: Py-PMAAn homopolymers with well-defined molecular weights were prepared via RAFT solution polymerization. They served as efficient stabilizers for aqueous GNP dispersions and performed better than a traditional small molecule surfactant and non-functionalized PMAA, especially at higher pH and with higher molecular weight polymers. The use of Py-PMAAn allowed GNPs to be readily formulated into waterborne latex coatings. When compared to controls, the resulting films were significantly reinforced due to the improved homogeneity of dried nanocomposite films and chain entanglement between the polymer matrix and stabilizers. Thus, the ability to readily incorporate GNPs into aqueous formulations and enhance GNP/polymer matrix interfaces was demonstrated for these novel amphiphilic stabilizers.

8.
Int J Biol Macromol ; 275(Pt 2): 133715, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977048

RESUMO

The fundamental binding of single-stranded (ssDNA) and double-stranded DNA (dsDNA) with graphene oxide-Ag nanocomposites (GO-AgNCPs) has been systematically investigated by multi spectroscopic methods, i.e. ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopy, and circular dichroism (CD). The experimental and theoretical results demonstrate that both ssDNA and dsDNA can be adsorbed onto the GO-AgNCPs surface. All of the evidence indicated that there were relatively strong binding of ssDNA/dsDNA with GO-AgNCPs. The article compares the differences in binding between the two types of DNA and the nanomaterials using spectroscopic and thermodynamic data. UV-vis absorption spectroscopy experiments indicate that the characteristic absorbance intensity of both ss DNA and ds DNA increases, but the rate of change in absorbance is different. The fluorescence results revealed that ss/dsDNA could interact with the GO-AgNCPs surface, in spite of the different binding affinities. The Ka value of ssDNA binding with GO-AgNCPs is greater than that of dsDNA at each constant temperature, indicating that the affinity of dsDNA toward GO-AgNCPs is comparatively weak. Molecular docking studies have corroborated the mentioned experimental results. The calculated thermodynamic parameters showed that the binding process was thermodynamically spontaneous, van der Waals force and hydrogen bonding played predominant roles in the binding process. The mechanism of ss/ds DNA binding with GO-AgNCPs was also investigated, and the results indicated that GO-AgNCPs directly binds to the minor groove of ss/ds DNA by replacing minor groove binders.

9.
Int Immunopharmacol ; 139: 112661, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39008936

RESUMO

The therapeutic effect of 5-amino salicylic acid (5-ASA), a first-line therapeutic agent for the treatment of ulcerative colitis (UC), is limited by the modest bioavailability afforded by its oral administration. In this study, a 5-ASA oral delivery system was developed using Eudragit S100-coated iron oxide-chitosan nanocomposites (ES-IOCS/5-ASA) to address this issue. According to drug release studies in vitro, ES-IOCS/5-ASA only released a small amount of drug in simulated gastric fluid with a pH of 1.2. However, in a medium with a pH of 7.5, a relatively rapid and complete release was noted. 5-ASA-loaded iron oxide-chitosan nanocomposites (IOCS/5-ASA) could be effectively taken up by NCM460 cells and performed better anti-inflammatory effects than free 5-ASA. At the same time, IOCS/5-ASA improved barrier damage in DSS-induced NCM460 cells. In vivo models of dextran sulphate sodium (DSS)-induced colitis were used to assess the therapeutic efficacy of oral administration of ES-IOCS/5-ASA. ES-IOCS/5-ASA significantly relieved DSS-induced colitis and enhanced the integrity of the intestinal epithelial barrier. ES-IOCS/5-ASA also reduced the expression of NLRP3, ASC and IL-1ß. Additionally, iron oxide nanoparticles used as nanozymes could alleviate inflammation. In summary, this study indicates that ES-IOCS/5-ASA exert anti-inflammatory effects on DSS-induced colitis by improving intestinal barrier function and inhibiting NLRP3 inflammasome expression, presenting a viable therapeutic choice for the treatment of UC.

10.
Int J Biol Macromol ; : 133616, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009258

RESUMO

BACKGROUND: Despite cisplatin's long history as a cornerstone in cancer therapy, both acquired chemoresistance and significant impacts on healthy tissues limit its use. Hepatotoxicity is one of its side effects. Adjunct therapies have shown promise in not only attenuating liver damage caused by cisplatin but also in enhancing the efficacy of chemotherapy. In this context, a new quaternary ammonium chitosan Schiff base (QACSB) was synthesized and applied as an encapsulating agent for the in-situ synthesis of QACSB-ZnO nanocomposite. MATERIAL AND METHODS: Thirty male albino rats were classified into Group 1 (control) distilled water, Group 2 (Cisplatin-treated) (12 mg/kg, i.p), and Group 3 (QACSB-ZnO NCs/cisplatin-treated) (150 mg/kg/day QACSB-ZnO NCs, i.p) for 14 days + a single dose of cisplatin. Liver functions, tissue TNF-α, MDA, and GSH were measured as well as histopathological and immunohistochemical studies were performed. RESULTS: The QACSB-ZnO NCs significantly restore liver functions, tissue TNF-α, MDA, and GSH levels (p < 0.001). Histopathological examination showed patchy necrosis in the cisplatin-treated group versus other groups. The QACSB-ZnO NCs showed a weak TGF-ß1 (score = 4) and a moderate Bcl-2 immunohistochemistry expression (score = 6) versus the CP group. CONCLUSIONS: QACSB-ZnO NCs have been shown to protect the liver from cisplatin-induced hepatotoxicity.

11.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000615

RESUMO

Capturing carbon dioxide (CO2) is still a major obstacle in the fight against climate change and the reduction of greenhouse gas emissions. To address this problem, we employed a simple Friedel-Crafts alkylation to investigate the effectiveness of porous organic polymers (POPs) based on triphenylamine (TPA) and trihydroxy aryl terms derived from chloranil (CH), designated as TPA-CH POP. We then treated the TPA-CH POP with (3-mercaptopropyl)trimethoxysilane (3-MPTS), forming a TPA-CH POP-SH nanocomposite to enhance CO2 capture. Utilizing FTIR, solid-state NMR, SEM, TEM, along with XPS techniques, the molecular makeup, morphological characteristics, as well as physical features of TPA-CH POP and the TPA-CH POP-SH nanocomposite were thoroughly explored. Upon scorching to 800 °C, the TPA-CH POP-SH nanocomposite demonstrated more thermal durability over TPA-CH POP, achieving a char yield of up to 71.5 wt.%. The TPA-CH POP-SH nanocomposite displayed a 2.5-times better CO2 capture, as well as a comparable adsorption capacity of 48.07 cm3 g-1 at 273 K. Additionally, we found that the TPA-CH POP-SH nanocomposite exhibited an improved CO2/nitrogen (N2) selectivity versus the original TPA-CH POP. Typical enthalpy changes for CO2 capture were somewhat increased by the 3-MPTS coating, indicating greater binding energies between CO2 molecules and the adsorbent surface. Our outcomes demonstrate that a TPA-CH POP composite coated with MPTS is a viable candidate for effective CO2 capture uses. Our findings encourage the investigation of different functional groups and optimization strategies.

12.
Polymers (Basel) ; 16(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000631

RESUMO

Fuel cell technology is at the forefront of sustainable energy solutions, and polyvinyl alcohol (PVA) membranes play an important role in improving performance. This article thoroughly investigates the various varieties of PVA membranes, their production processes, and the numerous modification tactics used to solve inherent problems. Various methods were investigated, including chemical changes, composite blending, and the introduction of nanocomposites. The factors impacting PVA membranes, such as proton conductivity, thermal stability, and selectivity, were investigated to provide comprehensive knowledge. By combining various research threads, this review aims to completely investigate the current state of PVA membranes in fuel cell applications, providing significant insights for both academic researchers and industry practitioners interested in efficient and sustainable energy conversion technologies. The transition from traditional materials such as Nafion to PVA membranes has been prompted by limitations associated with the former, such as complex synthesis procedures, reduced ionic conductivity at elevated temperatures, and prohibitively high costs, which have hampered their widespread adoption. As a result, modern research efforts are increasingly focused on the creation of alternative membranes that can compete with conventional technical efficacy and economic viability in the context of fuel cell technologies.

13.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000673

RESUMO

The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.

14.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000686

RESUMO

Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites were prepared in three ways: via ultrasonic mixing of PDACB and GO; via in situ oxidative polymerization of 3,6-dianiline-2,5-dichloro-1,4-benzoquinone (DACB) in the presence of GO; and by heating a suspension of previously prepared PDACB and GO in DMF with the removal of the solvent. The results of the study of the composition, chemical structure, morphology, thermal stability and electrical properties of nanocomposites obtained via various methods are presented. Nanocomposites obtained by mixing the components in an ultrasonic field demonstrated strong intermolecular interactions between PDACB and GO both due to the formation of hydrogen bonds and π-stacking, as well as through electrostatic interactions. Under oxidative polymerization of DACB in the presence of GO, the latter participated in the oxidative process, being partially reduced. At the same time, a PDACB polymer film was formed on the surface of the GO. Prolonged heating for 4 h at 85 °C of a suspension of PDACB and GO in DMF led to the dedoping of PDACB with the transition of the polymer to the base non-conductive form and the reduction of GO. Regardless of the preparation method, all nanocomposites showed an increase in thermal stability compared to PDACB. All nanocomposites were characterized by a hopping mechanism of conductivity. Direct current (dc) conductivity σdc values varied within two orders of magnitude depending on the preparation conditions.

15.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000692

RESUMO

The rapid development of electronic communication technology has led to an undeniable issue of electromagnetic pollution, prompting widespread attention from researchers to the study of electromagnetic shielding materials. Herein, a simple and feasible method of melt blending was applied to prepare iPP/TPU/MWCNT nanocomposites with excellent electromagnetic shielding performance. The addition of maleic anhydride-grafted polypropylene (PP-g-MAH) effectively improved the interface compatibility of iPP and TPU. A double continuous structure within the matrix was achieved by controlling the iPP/TPU ratio at 4:6, while the incorporation of multi-walled carbon nanotubes endowed the composites with improved electromagnetic shielding properties. Furthermore, by regulating the addition sequence of raw materials during the melt-blending process, a selective distribution of carbon nanotubes in the TPU matrix was achieved, thereby constructing interconnected conductive networks within the composites, significantly enhancing the electromagnetic shielding performance of iPP/TPU/MWCNTs, which achieved a maximum EMI shielding efficiency of 37.8 dB at an iPP/TPU ratio of 4:6 and an MWCNT concentration of 10 wt.%.

16.
Polymers (Basel) ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000717

RESUMO

Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.

17.
Materials (Basel) ; 17(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998163

RESUMO

With the wide application of laser weapons, the requirements of laser protection technology are becoming more and more strict. Therefore, it is important to find ideal optical limiting (OL) materials to protect human eyes and detectors. In this work, the nonlinear optical responses of gold nanoparticles/porous carbon (Au NPs/PC) nanocomposites prepared by the reduction method were studied using the nanosecond Z-scan technique. Compared with porous carbon, the Au NPs/PC nanocomposites show a lower damage threshold, a bigger optical limiting index and a wider absorption spectrum. The interaction between gold nanoparticles and porous carbon enhances the nonlinear scattering effect of suspended bubbles. These results indicate that Au NPs composites have potential applications in the protection of human eyes and detectors.

18.
Molecules ; 29(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998947

RESUMO

Rechargeable potassium ion batteries have long been regarded as one alternative to conventional lithium ion batteries because of their resource sustainability and cost advantages. However, the compatibility between anodes and electrolytes remains to be resolved, impeding their commercial adoption. In this work, the K-ion storage properties of Bi nanoparticles encapsulated in N-doped carbon nanocomposites have been examined in two typical electrolyte solutions, which show a significant effect on potassium insertion/removal processes. In a KFSI-based electrolyte, the N-C@Bi nanocomposites exhibit a high specific capacity of 255.2 mAh g-1 at 0.5 A g-1, which remains at 245.6 mAh g-1 after 50 cycles, corresponding to a high capacity retention rate of 96.24%. In a KPF6-based electrolyte, the N-C@Bi nanocomposites show a specific capacity of 209.0 mAh g-1, which remains at 71.5 mAh g-1 after 50 cycles, corresponding to an inferior capacity retention rate of only 34.21%. Post-investigations reveal the formation of a KF interphase derived from salt decomposition and an intact rod-like morphology after cycling in K2 electrolytes, which are responsible for better K-ion storage properties.

19.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999110

RESUMO

Electrochemical biosensors have emerged as powerful tools for the ultrasensitive detection of lung cancer biomarkers like carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and alpha fetoprotein (AFP). This review comprehensively discusses the progress and potential of nanocomposite-based electrochemical biosensors for early lung cancer diagnosis and prognosis. By integrating nanomaterials like graphene, metal nanoparticles, and conducting polymers, these sensors have achieved clinically relevant detection limits in the fg/mL to pg/mL range. We highlight the key role of nanomaterial functionalization in enhancing sensitivity, specificity, and antifouling properties. This review also examines challenges related to reproducibility and clinical translation, emphasizing the need for standardization of fabrication protocols and robust validation studies. With the rapid growth in understanding lung cancer biomarkers and innovations in sensor design, nanocomposite electrochemical biosensors hold immense potential for point-of-care lung cancer screening and personalized therapy guidance. Realizing this goal will require strategic collaboration among material scientists, engineers, and clinicians to address technical and practical hurdles. Overall, this work provides valuable insight for developing next-generation smart diagnostic devices to combat the high mortality of lung cancer.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Técnicas Eletroquímicas , Neoplasias Pulmonares , Humanos , Biomarcadores Tumorais/análise , Neoplasias Pulmonares/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Nanocompostos/química , Grafite/química
20.
Nanotechnology ; 35(39)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38949268

RESUMO

The emergence of piezoelectric nanogenerators (PENGs) presents a promising alternative to supply energy demands within the realms of portable and miniaturized devices. In this article, the role of 2D transition metal dichalcogenide tungsten sulfide (WS2) and conductive rGO sheets as filler materials inside the polyvinylidene fluoride (PVDF) matrix on piezoelectric performances has been investigated extensively. The strong electrostatic interaction between C-F and C-H monomer bonds of PVDF interacted with the large surface area of the WS2nanosheets, increasing the electroactive polar phases and resulting in enhanced ferroelectricity in the PVDF/WS2nanocomposite. Further, the inclusion of rGO sheets in the PVDF/WS2composite allows mobile charge carriers to move freely through the conductive network provided by the rGO basal planes, which improves the internal polarization of the PVDF/WS2/rGO nanocomposites and increases the electrical performance of the PENGs. The PVDF/WS2/0.3rGO nanocomposite-based PENG exhibits maximum piezoresponses with ∼8.1 times enhancements in the output power density than the bare PVDF-based PENG. The mechanism behind the enhanced piezoresponses in the PVDF/WS2/rGO nanocomposites has been discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA