Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 31(12): 2392-2400, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33595331

RESUMO

The study of metabolism heterogeneity is essential to understand the role of metabolites in supporting and regulating biological functions. To this end, several mass spectrometry imaging (MSI) approaches have been proposed for the detection of small molecule metabolites. However, high noise from the ionization matrix and low metabolome coverage hinder their applicability for untargeted metabolomics studies across space. In this context, nanostructure imaging (/initiator) mass spectrometry (NIMS) and NIMS with fluorinated gold nanoparticles (f-AuNPs) are attractive strategies for comprehensive MSI of metabolites in biological systems, which can provide heterogeneous metabolome coverage, ultrahigh sensitivity, and high lateral resolution. In particular, NIMS with f-AuNPs permits the simultaneous detection of polar metabolites and lipids in a single and cohesive analytical session, thus allowing the systems-level interpretation of metabolic changes. In this Perspective article, we discuss the use of NIMS and f-AuNPs in the exploration of metabolism heterogeneity and provide a critical outlook on future applications of this technology for revealing the metabolic architecture that supports biological functions in health and disease, from whole organisms to tissues, single cells, and subcellular compartments.


Assuntos
Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Nanoestruturas/análise , Análise de Célula Única/métodos , Animais , Desenho de Equipamento , Ouro/análise , Humanos , Espectrometria de Massas/instrumentação , Metabolômica/instrumentação , Nanopartículas Metálicas/análise , Análise de Célula Única/instrumentação
2.
ACS Nano ; 12(7): 6938-6948, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29966083

RESUMO

Nanostructure imaging mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) is a nanoparticle assisted laser desorption/ionization approach that requires low laser energy and has demonstrated high sensitivity. Here we describe NIMS with f-AuNPs for the comprehensive analysis of metabolites in biological tissues. F-AuNPs assist in desorption/ionization by laser-induced release of the fluorocarbon chains with minimal background noise. Since the energy barrier required to release the fluorocarbons from the AuNPs is minimal, the energy of the laser is maintained in the low µJ/pulse range, thus limiting metabolite in-source fragmentation. Electron microscopy analysis of tissue samples after f-AuNP NIMS shows a distinct "raising" of the surface as compared to matrix assisted laser desorption ionization ablation, indicative of a gentle desorption mechanism aiding in the generation of intact molecular ions. Moreover, the use of perfluorohexane to distribute the f-AuNPs on the tissue creates a hydrophobic environment minimizing metabolite solubilization and spatial dislocation. The transfer of the energy from the incident laser to the analytes through the release of the fluorocarbon chains similarly enhances the desorption/ionization of metabolites of different chemical nature, resulting in heterogeneous metabolome coverage. We performed the approach in a comparative study of the colon of mice exposed to three different diets. F-AuNP NIMS allows the direct detection of carbohydrates, lipids, bile acids, sulfur metabolites, amino acids, nucleotide precursors as well as other small molecules of varied biological origins. Ultimately, the diversified molecular coverage obtained provides a broad picture of a tissue's metabolic organization.


Assuntos
Ouro/química , Halogenação , Espectrometria de Massas , Nanoestruturas/química , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Bacteroides fragilis/citologia , Bacteroides fragilis/isolamento & purificação , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Carboidratos/análise , Colo/química , Colo/metabolismo , Ouro/metabolismo , Lipídeos/análise , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos/análise , Nucleotídeos/metabolismo , Imagem Óptica , Enxofre/análise , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA