Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.313
Filtrar
1.
Sci Rep ; 14(1): 18260, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107383

RESUMO

The Boerdijk-Coxeter helix (BC helix or tetrahelix) is a linear stacking of regular tetrahedra. Although the BC helix exhibits an aperiodic nature, structures resembling the BC helix with periodicity are found in materials. To understand such structures, we considered a modification of the BC helix to introduce periodicity. By adjusting the relative rotation of adjacent tetrahedra, we demonstrated that periodic arrangements consisting of 8, 11, and 14 tetrahedra have appearances similar to that of the BC helix.

2.
Int J Biol Macromol ; 278(Pt 2): 134770, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151862

RESUMO

Lightweight, flexible, efficient and easy-to-manufacture electromagnetic interference (EMI) shielding materials are in urgent demand in the communications industry, artificial intelligence and wearable electronics. Based on the large size difference between one-dimensional carboxymethyl cellulose nanofibers (CMC) and large-diameter silver nanowires (AgNWs), layered AgNWs/CMC nanocomposite films with large effective thickness, and high conductivity were first prepared by a simple one-step vacuum filtration self-assembly technique. The unique layered structure of the AgNWs/CMC nanocomposite film significantly enhances the conductive pathways within the film, endowing it excellent EMI shielding performance. The results show that the conductivity of the ultra-thin film with a thickness of 20 µm is 3.72 × 106 S/m, and the EMI SE in the X-band is 87.7 dB, which can effectively shield electromagnetic signals in mobile communications. Furthermore, the AgNWs/CMCs nanocomposite films exhibit excellent thermal management performance, which can be heated to 100-180 °C within 10 s at a low voltage of 1.5 V. In particular, this nanocomposite film with a new layered structure provides a noval preparation idea for future EMI shielding materials and wearable heating devices.

3.
ACS Nano ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133557

RESUMO

Bottom-up growth offers precise control over the structure and geometry of semiconductor nanowires (NWs), enabling a wide range of possible shapes and seamless heterostructures for applications in nanophotonics and electronics. The most common vapor-liquid-solid (VLS) growth method features a complex interaction between the liquid metal catalyst droplet and the anisotropic structure of the crystalline NW, and the growth is mainly orchestrated by the triple-phase line (TPL). Despite the intrinsic mismatch between the droplet and the NW symmetries, its discussion has been largely avoided because of its complexity, which has led to the situation when multiple observed phenomena such as NW axial asymmetry or the oscillating truncation at the TPL still lack detailed explanation. The introduction of an electric field control of the droplet has opened even more questions, which cannot be answered without properly addressing three-dimensional (3D) structure and morphology of the NW and the droplet. This work describes the details of electric-field-controlled VLS growth of germanium (Ge) NWs using environmental transmission electron microscopy (ETEM). We perform TEM tomography of the droplet-NW system during an unperturbed growth, then track its evolution while modulating the bias potential. Using 3D finite element method (FEM) modeling and crystallographic considerations, we provide a detailed and consistent mechanism for VLS growth, which naturally explains the observed asymmetries and features of a growing NW based on its crystal structure. Our findings provide a solid framework for the fabrication of complex 3D semiconductor nanostructures with ultimate control over their morphology.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39133654

RESUMO

Aggregation-induced emission (AIE) molecules have great potential to enhance the performance of micronano lasers due to their excellent aggregated luminescence properties, so it is valuable to expand their applications in micronano lasers. In this work, a typical AIE active fluorescent dye motif 9,10-bis(2,2-diphenylvinyl) anthracene (BDPVA) was selected as the gain medium. First, drop-casting was used to fabricate BDPVA single-crystal nanowires, which can be used as Fabry-Perot (FP)-type resonators with a lasing threshold of 49.4 µJ/cm2. Furthermore, we innovatively doped BDPVA molecules as gain mediums into external polymer Whispering-Gallery-Mode (WGM)-type resonators via the emulsion self-assembly method. Fabricated BDPVA-doped polystyrene (PS) microspheres exhibit a much lower lasing threshold of 9.04 µJ/cm2. These results prove that the BDPVA molecules, in addition to realizing the reported AIE single-crystal lasers, can also be used as a guest-doped gain medium in the resonant cavity for obtaining better fluorescence gain. In addition, multimode tunability of two types of lasers has been successfully achieved by tuning the structure of the resonant cavity. This work further expands the application potential of AIE materials and will provide a useful reference for the rational design and fabrication of photonic micronano laser components using AIE materials.

5.
J Colloid Interface Sci ; 677(Pt A): 150-157, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39089123

RESUMO

The development of core-shelled heterostructures with the unique morphology can improve the electrochemical properties of hybrid supercapacitors (HSC). Here, CuCo2S4 nanowire arrays (NWAs) are vertically grown on nickel foam (NF) utilizing hydrothermal synthesis. Then, CoMo-LDH nanosheets are uniformly deposited on the CuCo2S4 NWAs by electrodeposition to obtain the CoMo-LDH@CuCo2S4 NWAs/NF electrode. Due to the superior conductivity of CuCo2S4 (core) and good redox activity of CoMo-LDH (shell), the electrode shows excellent electrochemical properties. The electrode's specific capacity is 1271.4 C g-1 at 1 A g-1, and after 10, 000 cycles, its capacity retention ratio is 92.2 % at 10 A g-1. At a power density of 983.9 W kg-1, the CoMo-LDH@CuCo2S4 NWAs/NF//AC/NF device has an energy density of 52.2 Wh kg-1. This indicates that CoMo-LDH@CuCo2S4/NF has a great potential for supercapacitors.

6.
Small ; : e2404808, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136428

RESUMO

The construction of crystalline metal-organic frameworks with regular architectures supportive of enhanced mass transport and bubble diffusion is imperative for electrocatalytic applications; however, this poses a formidable challenge. Here, a method is presented that confines the growth of nano-architectures to the liquid-liquid interface. Using this method, vertically oriented single crystalline nanowire arrays of an Ag-benzenehexathiol (BHT) conductive metal-organic framework (MOF) are fabricated via an "in-plane self-limiting and out-of-plane epitaxial growth" mechanism. This material has excellent electrocatalytic features, including highly exposed active sites, intrinsically high electrical conductivity, and superhydrophilic and superaerophobic properties. Leveraging these advantages, the carefully designed material demonstrates superior electrocatalytic hydrogen evolution activity, resulting in a low Tafel slope of 66 mV dec-1 and a low overpotential of 275 mV at a high current density of 1 A cm-2. Finite element analysis (FEA) and in situ microscopic verification indicates that the nanowire array structure significantly enhances the electrolyte transport kinetics and promotes the rapid release of gas bubbles. The findings highlight the potential of using MOF-based ordered nanoarray structures for advanced electrocatalytic applications.

7.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120377

RESUMO

This brief review covers the thermoelectric properties of one-dimensional materials, such as nanowires and nanotubes. The highly localised peaks of the electronic density of states near the Fermi levels of these nanostructured materials improve the Seebeck coefficient. Moreover, quantum confinement leads to discrete energy levels and a modified density of states, potentially enhancing electrical conductivity. These electronic effects, coupled with the dominance of Umklapp phonon scattering, which reduces thermal conductivity in one-dimensional materials, can achieve unprecedented thermoelectric efficiency not seen in two-dimensional or bulk materials. Notable advancements include carbon and silicon nanotubes and Bi3Te2, Bi, ZnO, SiC, and Si1-xGex nanowires with significantly reduced thermal conductivity and increased ZT. In all these nanowires and nanotubes, efficiency is explored as a function of the diameter. Among these nanomaterials, carbon nanotubes offer mechanical flexibility and improved thermoelectric performance. Although carbon nanotubes theoretically have high thermal conductivity, the improvement of their Seebeck coefficient due to their low-dimensional structure can compensate for it. Regarding flexibility, economic criteria, ease of fabrication, and weight, carbon nanotubes could be a promising candidate for thermoelectric power generation.

8.
ACS Nano ; 18(33): 21873-21885, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115266

RESUMO

The silicon nanowire field-effect transistor (SiNW FET) has been developed for over two decades as an ultrasensitive, label-free biosensor for biodetection. However, inconsistencies in manufacturing and surface functionalization at the nanoscale have led to poor sensor-to-sensor consistency in performance. Despite extensive efforts to address this issue through process improvements and calibration methods, the outcomes have not been satisfactory. Herein, based on the strong correlation between the saturation response of SiNW FET biosensors and both their feature size and surface functionalization, we propose a calibration strategy that combines the sensing principles of SiNW FET with the Langmuir-Freundlich model. By normalizing the response of the SiNW FET biosensors (ΔI/I0) with their saturation response (ΔI/I0)max, this strategy fundamentally overcomes the issues mentioned above. It has enabled label-free detection of nucleic acids, proteins, and exosomes within 5 min, achieving detection limits as low as attomoles and demonstrating a significant reduction in the coefficient of variation. Notably, the nucleic acid test results exhibit a strong correlation with the ultraviolet-visible (UV-vis) spectrophotometer measurements, with a correlation coefficient reaching 0.933. The proposed saturation response calibration strategy exhibits good universality and practicability in biological detection applications, providing theoretical and experimental support for the transition of mass-manufactured nanosensors from theoretical research to practical application.


Assuntos
Técnicas Biossensoriais , Nanofios , Silício , Transistores Eletrônicos , Silício/química , Técnicas Biossensoriais/instrumentação , Nanofios/química , Calibragem , Ácidos Nucleicos/análise
9.
Nano Lett ; 24(33): 10313-10321, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39115248

RESUMO

Lightweight porous ceramics with a unique combination of superior mechanical strength and damage tolerance are in significant demand in many fields such as energy absorption, aerospace vehicles, and chemical engineering; however, it is difficult to meet these mechanical requirements with conventional porous ceramics. Here, we report a graded structure design strategy to fabricate porous ceramic nanowire networks that simultaneously possess excellent mechanical strength and energy absorption capacity. Our optimized graded nanowire networks show a compressive strength of up to 35.6 MPa at a low density of 540 mg·cm-3, giving rise to a high specific compressive strength of 65.7 kN·m·kg-1 and a high energy absorption capacity of 17.1 kJ·kg-1, owing to a homogeneous distribution of stress upon loading. These values are top performance compared to other porous ceramics, giving our materials significant potential in various engineering fields.

10.
Appl Spectrosc ; : 37028241267892, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39091019

RESUMO

Raman spectroscopy is among the top analytical techniques for ultra-low-dense organic matter, crucial to the search for life and analysis of celestial body surfaces in space exploration missions. Achieving the ultimate sensitivity of in-situ Raman spectroscopy necessitates a breakthrough in detecting inelastically scattered light. Single-photon detectors (SPDs) operating in photon counting mode, which can differentiate between Raman and luminescence responses, are promising candidates for the challenging scientific requirements. Since large SPD arrays are not yet commercially available, a dispersive element can be adapted to a single-pixel detector. By exploiting chromatic dispersion in optical fibers and picosecond-pulsed excitation, we delay the arrivals of different spectral components onto a single-pixel SPD. This method also separates weak Raman signals from stronger luminescence through correlated time-domain measurements. We study the impact of fiber properties and the excitation wavelength of a pulsed laser on the spectral resolution of the fiber-dispersive Raman spectrometer (FDRS). Additionally, we demonstrate the FDRS's potential for studying biomarkers and discuss its feasibility for analyzing inclusions in ice matrices.

11.
ACS Appl Mater Interfaces ; 16(31): 41293-41299, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051736

RESUMO

Selective-area epitaxy (SAE) is a useful technique to grow epitaxial films with a desired shape on a prepatterned substrate. Although SAE of patterned topological-insulator (TI) thin films has been performed in the past, there has been no report of SAE-grown TI structures that are bulk-insulating. Here we report the successful growth of Hall-bars and nanowires of bulk-insulating TIs using the SAE technique. Their transport properties show that the quality of the selectively grown structures is comparable to that of bulk-insulating TI films grown on pristine substrates. In SAE-grown TI nanowires, we were able to observe Aharonov-Bohm-like magnetoresistance oscillations that are characteristic of the quantum-confined topological surface states. The availability of bulk-insulating TI nanostructures via the SAE technique opens the possibility to fabricate intricate topological devices in a scalable manner.

12.
Nano Lett ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083658

RESUMO

The high operating voltage of conventional nanoelectromechanical switches, typically tens of volts, is much higher than the driving voltage of the complementary metal oxide semiconductor integrated circuit (∼1 V). Though the operating voltage can be reduced by adopting a narrow air gap, down to several nanometers, this leads to formidable manufacturing challenges and occasionally irreversible switch failures due to the surface adhesive force. Here, we demonstrate a new nanowire-morphed nanoelectromechanical (NW-NEM) switch structure with ultralow operation voltages. In contrast to conventional nanoelectromechanical switches actuated by unidirectional electrostatic attraction, the NW-NEM switch is bidirectionally driven by Lorentz force to allow the use of a large air gap for excellent electrical isolation, while achieving a record-low driving voltage of <0.2 V. Furthermore, the introduction of the Lorentz force allows the NW-NEM switch to effectively overcome the adhesion force to recover to the turn-off state.

13.
ACS Appl Mater Interfaces ; 16(30): 39818-39826, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012780

RESUMO

We propose to improve the solar energy utilization by using InGaN inclined nanowire array photocathodes. We first study vertical nanowire array. On the basis of vertical nanowire array, we study inclined nanowires by changing the inclination angle of nanowires. The inclined nanowires exhibit higher quantum efficiency at larger period and larger inclination angle. However, the infinite expansion of period will cause its performance to degrade. The quantum efficiency of inclined nanowires with a period of 175 nm and an inclination angle of 5.35° is as high as 80.2% when the incident light angle is irradiated at 5°. In addition, applying an electric field can improve the collection efficiency of inclined nanowires and help them maintain a high collection efficiency over a longer wavelength range. The design principles proposed in this work will provide a theoretical reference for the performance improvement of InGaN photocathodes.

14.
ACS Appl Mater Interfaces ; 16(30): 40199-40209, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39029113

RESUMO

Silver nanowires (NWs) (AgNWs) have emerged as the most promising conductive materials in flexible optoelectronic devices owing to their excellent photoelectric properties and mechanical flexibility. It is widely acknowledged that the practical application of AgNW networks faces challenges, such as high surface roughness, poor substrate adhesion, and limited stability. Encapsulating AgNW networks with graphene has been recognized as a viable strategy to tackle these issues. However, conventional methods like self-assembly reduction-oxidation or chemical vapor deposition often yield graphene protective layers with inherent defects. Here, we propose a novel one-step hot-pressing method containing ethanol solution that combines the spontaneous transfer and encapsulation process of rGO films onto the surface of the AgNWs network, enabling the preparation of flexible rGO/AgNWs/PET (reduced graphene oxide/silver NWs/polyethylene terephthalate) electrodes. The composite electrode exhibits outstanding photoelectric properties (T ≈ 88%, R ≈ 6 Ω sq-1) and possesses a smooth surface, primarily attributed to the capillary force generated by ethanol evaporation, ensuring the integrity of the rGO delamination process on the original substrate. The capillary force simultaneously promotes the tight encapsulation of rGO and AgNWs, as well as the welding of the AgNWs junction, thereby enhancing the mechanical stability (20,000 bending cycles and 100 cycles of taping tests), thermal stability (∼30 °C and ∼25% humidity for 150 days), and environmental adaptability (100 days of chemical attack) of the electrode. The electrode's practical feasibility has been validated by its exceptional flexibility and cycle stability (95 and 98% retention after 5000 bending cycles and 12,000 s long-term cycles) in flexible electrochromic devices.

15.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959870

RESUMO

Electron beam lithography (EBL) stands out as a powerful direct-write tool offering nanometer-scale patterning capability and is especially useful in low-volume R&D prototyping when coupled with pattern transfer approaches like etching or lift-off. Among pattern transfer approaches, lift-off is preferred particularly in research settings, as it is cost-effective and safe and does not require tailored wet/dry etch chemistries, fume hoods, and/or complex dry etch tools; all-in-all offering convenient, 'undercut-free' pattern transfer rendering it useful, especially for metallic layers and unique alloys with unknown etchant compatibility or low etch selectivity. Despite the widespread use of the lift-off technique and optical/EBL for micron to even sub-micron scales, existing reports in the literature on nanofabrication of metallic structures with critical dimension in the 10-20 nm regime with lift-off-based EBL patterning are either scattered, incomplete, or vary significantly in terms of experimental conditions, which calls for systematic process optimization. To address this issue, beyond what can be found in a typical photoresist datasheet, this paper reports a comprehensive study to calibrate EBL patterning of sub-50 nm metallic nanostructures including gold nanowires and nanogaps based on a lift-off process using bilayer polymethyl-methacrylate as the resist stack. The governing parameters in EBL, including exposure dose, soft-bake temperature, development time, developer solution, substrate type, and proximity effect are experimentally studied through more than 200 EBL runs, and optimal process conditions are determined by field emission scanning electron microscope imaging of the fabricated nanostructures reaching as small as 11 nm feature size.

16.
Nanotechnology ; 35(41)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39019046

RESUMO

This study examines the memory and read delay characteristics of quasi-nonvolatile memory (QNVM) devices operating in a positive feedback mechanism through technology computer-aided design simulation. The QNVM devices exhibit a rapid operation speed of 5 ns, a significant sensing margin of approximately 8.0µA, and a retention time of around 1 s without any external bias. These devices showcase an exceptionally brief read delay of 0.12 ns. The energy band diagrams during the memory operation are analyzed to clarify the factors influencing the read delay. The write and standby conditions modulate the potential barrier height during the standby operation, thereby affecting the read delay. Moreover, the shorter rising time causes the reduction of the read delay. This study demonstrates that the QNVM device has the potential to resolve energy consumption and speed issues in nonvolatile memory devices.

17.
Small ; : e2402682, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058237

RESUMO

Low-dimensional photoconductors have extraordinarily high photoresponse and gain, which can be modulated by gate voltages as shown in literature. However, the physics of gate modulation remains elusive. In this work, the physics of gate modulation in silicon nanowire photoconductors with the analytical photoresponse equations is investigated. It is found that the impact of gate voltage varies vastly for nanowires with different size. For the wide nanowires that cannot be pinched off by high gate voltage, it is found that the photoresponses are enhanced by at least one order of magnitude due to the gate-induced electric passivation. For narrow nanowires that starts with a pinched-off channel, the gate voltage has no electric passivation effect but increases the potential barrier between source and drain, resulting in a decrease in dark and photocurrent. For the nanowires with an intermediate size, the channel is continuous but can be pinched off by a high gate voltage. The photoresponsivity and photodetectivity is maximized during the transition from the continuous channel to the pinched-off one. This work provides important insights on how to design high-performance photoconductors.

18.
Nanomaterials (Basel) ; 14(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39057879

RESUMO

In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control DW thermal stability at the pinning sites. It is proposed to design a new scheme using a stepped area of a certain depth (d) and length (λ). The study reveals that DW thermal stability is highly dependent on the geometry of the pinning area (d and λ), magnetic properties such as saturation magnetization (Ms) and magnetic anisotropy energy (Ku), and the dimensions of the nanowires. For certain values of d and λ, DWs remain stable at temperatures over 500 K, which is beneficial for memory applications. Higher DW thermal stability is also achieved by decreasing nanowire thickness to less than 10 nm, making DW memories stable below 800 K. Finally, our results help to construct DW memory nanodevices with nanodimensions less than a 40 nm width and less than a 10 nm thickness with high DW thermal stability.

19.
Nanotechnology ; 35(39)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964286

RESUMO

Increasing quantum confinement in semiconductor quantum dot (QD) systems is essential to perform robust simulations of many-body physics. By combining molecular beam epitaxy and lithographic techniques, we developed an approach consisting of a twofold selective area growth to build QD chains. Starting from 15 nm-thick and 65 nm-wide in-plane In0.53Ga0.47As nanowires on InP substrates, linear arrays of In0.53Ga0.47As QDs were grown on top, with tunable lengths and separations. Kelvin probe force microscopy performed at room temperature revealed a change of quantum confinement in chains with decreasing QD sizes, which was further emphasized by the spectral shift of quantum levels resolved in the conduction band with low temperature scanning tunneling spectroscopy. This approach, which allows the controlled formation of 25 nm-thick QDs with a minimum length and separation of 30 nm and 22 nm respectively, is suitable for the construction of scalable fermionic quantum lattices.

20.
Talanta ; 278: 126496, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996563

RESUMO

Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Nanocompostos , Nanofios , Platina , Dopamina/análise , Dopamina/sangue , Dopamina/química , Platina/química , Células PC12 , Nanofios/química , Nanocompostos/química , Animais , Carbono/química , Ratos , Porosidade , Técnicas Eletroquímicas/métodos , Neurônios/metabolismo , Limite de Detecção , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA