Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.482
Filtrar
1.
Angew Chem Int Ed Engl ; : e202418349, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373128

RESUMO

Quantum size effect usually causes energy level splitting and band broadening as material size decreases. However, this may change again by the surface adsorbents, doping and defects, which rarely attracts much attention. Herein, CdWO4 sub-1 nm nanowires (SNWs) with oleylamine adsorption, PO43--doping and oxygen defects are synthesized by combining Cd(CH3COO)2, H3PW12O40 (PW12) and oleylamine (abbreviated as PO43--CdWO4-X SNWs). Compared with bulk CdWO4, they exhibit unexpected absorption spectra (extended from 292 nm to 453 nm) and bandgap (reduced from 4.25 eV to 2.74 eV), thus bringing remarkable visible-light CO2 photoreduction activity. Under 410 nm LED light irradiation, PO43--CdWO4-40 SNWs exhibit the highest photocatalytic performance with a CO2-to-CO generation rate of 1685 µmol g-1 h-1. Density functional theory (DFT) calculations demonstrate the adsorbed oleylamine raises the valence band and enhances the adsorption of reaction substrate and intermediates, thus decreasing their reduction energy barriers. Furthermore, PO43--doping and oxygen defects will generate defect energy band below the conduction band of PO43--CdWO4-40 SNWs, resulting in remarkable visible light absorption and superior photocatalytic CO2 reduction performance. This work highlights the significant impacts of surface adsorbents, doping and defects on the physicochemical and catalytic properties of sub-nano materials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39364809

RESUMO

Self-driven photodetectors (PDs) hold significant potential for the development of new information devices, which boast the advantages of ultralow power consumption and straightforward fabrication. In this study, we have proposed and demonstrated a self-driven ultraviolet PD utilizing gallium nitride/metal-organic framework (GaN/MOF) heterojunction nanowires successfully. By introducing Gd-ETTC MOFs on the surface of GaN nanowires, the photocurrent and responsivity of the device can be improved by approximately 75% under 310 nm illumination. Furthermore, they can also be effectively enhanced under visible light illumination. Owing to the appropriate energy level alignment, Gd-ETTC MOFs can serve as both a light harvester and a hole conductor, facilitating the efficient absorption, separation, and transmission of photogenerated carriers. It has been observed that due to reduced interface resistance, MOFs can enhance the charge transport through the acceleration of charge transfer. Furthermore, the PD equipped with MOFs is capable of continuous operation for 30,000 s, a feat attributable to the exceptional stability of both GaN nanowires and Gd-ETTC MOFs. By implementation of the humanoid robot systems, the control commands from the self-driven PD can drive the humanoid robot to execute different actions. The PD-equipped autonomous feedback system of a humanoid robot enables a seamless integration of light perception with intelligent robotic actions. Therefore, the design and demonstration of GaN/MOF nanowires hold significant reference value for further enhancing the performance of PDs and broadening their applications in ultralow-power artificial intelligence systems, humanoid intelligent robots, etc.

3.
Mikrochim Acta ; 191(11): 645, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365453

RESUMO

Solvothermal synthesis of 1D n-In2O3@n-WO3 heterojunction nanowires (HNWs) and their NO2 gas sensing characteristics are reported. The n-In2O3@n-WO3 HNWs have been well-characterised using XRD, Raman spectroscopy, XPS, SEM and HRTEM analyses. The NO2 sensing performance of n-In2O3@n-WO3 HNWs showed superior performance compared with pristine WO3 NWs. Due to the distinctive configuration of WO3-In2O3 heterojunctions, the n-In2O3@n-WO3 HNWs demonstrated remarkable sensitivity reaching 182% in response towards 500 ppb of NO2 gas at operating temperature of 200°C which is nearly 3.5 times greater than the response observed with pristine WO3 (50%). Moreover, the n-In2O3@n-WO3 HNWs also exhibited fast response (8-13 s)/recovery (54-62 s) time characteristics. A plausible sensing mechanism has been discussed. The enhancement in sensor characteristics shows that n-In2O3@n-WO3 HNWs could serve as a promising material for high-performance NO2 gas sensors for real-time environmental monitoring applications. This work could provide new understandings of the sensing mechanism of n-In2O3@n-WO3-based heterojunction nanowires, which can be applied to the design of novel n-n type MOS heterojunction materials for the application of low-temperature real-time high-performance NO2 sensors.

4.
Small Methods ; : e2400989, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348097

RESUMO

In recent years, the rapid development of brain-inspired neuromorphic systems has created an imperative demand for artificial photonic synapses that operate with low power consumption. In this study, a self-driven memristor synapse based on gallium oxide (Ga2O3) nanowires is proposed and demonstrated successfully. This memristor synapse is capable of emulating a range of functionalities of biological synapses when exposed to 255 nm light stimulation. These functionalities encompass peak time-dependent plasticity, pulse facilitation, and memory learning capabilities. It exhibits an ultrahigh paired-pulse facilitation index of 158, indicating exceptional learning performance. The transition from short-term memory to long-term memory can be attributed to the remarkable relearning capabilities. Furthermore, the potential applications of the memristor synapse is showcased through the successful manipulation of a humanoid intelligent robot. Upon establishing artificial intelligence (AI) systems, the control commands originating from the synaptic device can drive the humanoid robot to perform various actions. Based on the memristor synapses, the autonomous feedback system of the humanoid robot facilitates a good collaboration between robotic actions and bio-inspired light perception. Therefore, this research opens up an effective way to advance the development of neuromorphic computing technologies, AI systems, and intelligent robots that demand ultra-low energy consumption.

5.
Nano Lett ; 24(38): 11992-11999, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39269785

RESUMO

Bimetallic nanowires play important roles in the fields of electronics and mechanics. However, their structure types and morphological control methods are limited, especially for systems with low lattice mismatch. Herein, for a Cu-Ni bimetallic system with lattice mismatch ratio less than 2.5%, a novel preparation approach of various Cu-Ni nanowires dominated by Ni(II) reduction kinetics is presented. With the increase of Ni(II) reduction rate, the core-shell Cu@Ni straight nanowires, the asymmetric Cu-Ni nanocurves, and asymmetric Cu-Ni nanocoils can be prepared, respectively. The formation of Cu-Ni nanowires with different structures can be divided into the growth of Cu nanowires and the deposition of Ni. The regulatory effects were revealed by establishing a kinetic model for Ni(II) reduction. For the novel Cu-Ni asymmetrically distributed nanocurves and nanocoils, the formation mechanism was proposed by considering the Cu nanowire bending due to the rearrangement of surface ligand and bending-induced symmetry breaking of Ni(II) reduction.

6.
ACS Appl Mater Interfaces ; 16(40): 54189-54198, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39325447

RESUMO

The integration of high-performance transparent top electrodes with the functional layers of transparent quantum dot light-emitting diodes (T-QLEDs) poses a notable challenge. This study presents a composite transparent top electrode composed of MXene and Ag NWs. The composite electrode demonstrates exceptional transparency (84.6% at 620 nm) and low sheet resistance (16.07 Ω sq-1), rendering it suitable for integration into T-QLEDs. The inclusion of MXene nanosheets in the composite electrode serves a dual role: adjusting the work function to enhance electron injection efficiency and enhancing the interface between Ag NWs and the emissive layer, thereby mitigating the common issue of interfacial resistance in conventional transparent electrodes. This strategic amalgamation results in notable improvements in device performance, yielding a maximum current efficiency of 23.12 cd A-1, an external quantum efficiency of 13.98%, and a brightness of 21,015 cd m-2. These performance metrics surpass those achieved by T-LEDs employing pristine Ag NW electrodes. This study offers valuable insights into T-QLED device advancement and provides a promising approach for transparent electrode fabrication in optoelectronic applications.

7.
ACS Appl Mater Interfaces ; 16(40): 54837-54846, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39340423

RESUMO

The Pb1-xSnxTe family of compounds possess a wide range of intriguing and useful physical properties, including topologically protected surface states, robust ferroelectricity, remarkable thermoelectric properties, and potential topological superconductivity. Compared to bulk crystals, one-dimensional (1D) nanowires (NWs) offer a unique platform to enhance the functional properties and enable new capabilities, e.g., to realize 1D Majorana zero modes for quantum computations. However, it has been challenging to achieve controlled synthesis of ultrathin Pb1-xSnxTe (0 ≤ x ≤ 1) nanowires in the truly 1D region. In this work, we report on a Au-catalyzed vapor-liquid-solid (VLS) growth of remarkably thin (20-30 nm) and sufficiently long (several to tens of micrometers) Pb1-xSnxTe nanowires of high single-crystalline quality in a controlled fashion. This controlled growth was achieved by enhancing the incorporation of Te into the Au catalyst particle to facilitate the precipitation of the Sn/Pb species and suppress the enlargement of the particle, which we identified as a major challenge for the growth of ultrathin nanowires. Our growth strategy can be easily extended to other compound and alloy nanowires, where the constituent elements have different incorporation rates into the catalyst particle. Furthermore, the growth of thin Pb1-xSnxTe nanowires enabled strain-dependent electrical transport measurements, which shows an enhancement of electrical resistance and ferroelectric transition temperature induced by uniaxial tensile strain along the nanowire axial direction, consistent with density functional theory calculations of the structural phase stability.

8.
Nanomicro Lett ; 17(1): 28, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343866

RESUMO

The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.

9.
Nanomaterials (Basel) ; 14(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39330625

RESUMO

In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed. The ability to control the dynamic properties and frequencies of these nanostructures underscores their potential application in frequency-selective magnetic devices.

10.
Nanomaterials (Basel) ; 14(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39330687

RESUMO

Silver nanowires (AgNWs) have excellent electrical conductivity and nano-sized effects and have been widely used as a high-performance electromagnetic shielding material. However, silver nanowires have poor mechanical properties and are prone to fracture during the preparation of composite materials. In this study, PVDF/rGO/AgNW composites with a segregated structure were prepared using low-pressure compression molding and the AgNW-backfilling process. The low-pressure compression of the composite significantly improves its electromagnetic shielding performance because the low-pressure process can maintain the AgNWs' integrity. The backfilled AgNWs played a vital role in increasing the path of electromagnetic wave propagation and the absorption of electromagnetic waves. The backfilled amount of AgNWs was only 1 wt%, which increased the composite material's conductivity by one order of magnitude. The total electromagnetic interference shielding (SET) of the composite materials increased by 23.3% from 24.88 dB to 30.67 dB. The absorption contribution (SEA/SET) increased from 84.2% to 92.8%, significantly improving the electromagnetic interference shielding and the absorption contribution of the AgNWs in the composites. This was attributed to the backfilling of the porous structure by the AgNWs, which promoted multiple reflections and enhanced the absorption contribution.

11.
Nanotechnology ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348840

RESUMO

We have studied the impact of nanowire alignment and measurement direction at the percolation threshold on the effective resistance (R) of two-dimensional (2D) films. This helps us to analyze the effect of anisotropy on the conductivity and transmittance of the nanowire-based network characterized by the disorder parameter (s). These optoelectronic properties are determined for systems with monodisperse as well as bimodal distribution of length. The 2D systems that are simulated using our computational approach are assumed to be transparent and conductive in which percolative transport is the primary conduction mechanism. We obtain our results numerically using a computational and geometrical approach, i.e., a Discrete (grid) method, advantageous in algorithm speed. For a particular disorder parameter s, the conductivity and transmittance increase as the length fraction increases for the bimodal distribution of the length of nanowires in networks. We have observed the maximum conductivity when the nanowires are highly aligned along the measurement direction of percolation, in contrast to the isotropic arrangement of nanowires. Significantly, alignment introduced in nanowires leads to a higher percolation threshold which leads to a decrease in the transmittance of the network. We show that the resistivity of the monodisperse network in the direction parallel (perpendicular) to the alignment decreases (increases) with the disorder parameter and scales as s (s2). This scaling holds true for the bimodal distribution of nanowires as well. For a particular length fraction, the electrical anisotropy increases with s. The anisotropy is maximum for nearly aligned nanowires in a bimodal network with the highest proportion of the longest wire considered. For the maximally aligned wires and highest length fraction, we obtained an approximately 50% enhancement in the figure of merit, denoted by ϕ. Hence, incorporating longer length wires and increasing the alignment in nanowire networks increases the conductivity, anisotropy, and figure of merit.

12.
Small ; : e2404143, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344520

RESUMO

Peroxydisulfate (PDS), a popular molecule that is able to oxidize organic compounds, is garnering attention across various disciplines of chemistry, materials, pharmaceuticals, environmental remediation, and sustainability. Methylene blue (MB) is a model pollutant that can be readily oxidized by PDS-derived radicals. Unlike the conventional degradation process, here a reversible "dissolution-precipitation" phenomenon is discovered, triggered by a simple mixing of PDS and MB, revealing a novel application of PDS in fabricating self-assembled ultra-long nanowires with MB. This phenomenon is unique to PDS and MB, different from the traditional salting out or self-aggregation of dyes. Formation of nanowires facilitated by electrostatic interaction between S+ and O- moieties and π-π stacking is reversible, controlled by temperature and the solvent polarity. MB1-PDS-MB2 configuration (MB: PDS = 2:1) is theoretically predicted by density functional theory (DFT) calculations and further validated by stoichiometric ratios of carbon, sulfur, and nitrogen in the obtained precipitates (MBO). This untapped feature of PDS enables the development of colorimetric quantitative detection of PDS and sustainable dye recycling. Far more than those demonstrated cases, the potentialities of MBO as a nanomaterial merit further exploration.

13.
Small Methods ; : e2400728, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308195

RESUMO

Crystal Phase Quantum Dots (CPQDs) offer promising properties for quantum communication. How CPQDs can be formed in Au-catalyzed GaAs nanowires using different precursor flows and temperatures by in situ environmental transmission electron microscopy (ETEM) experiments is studied. A III-V gas supply system controls the precursor flow and custom-built micro electro-mechanical system (MEMS) chips with monocrystalline Si-cantilevers are used for temperature control, forming a micrometer-scale metal-organic vapor phase epitaxy (µMOVPE) system. The preferentially formed crystal phases are mapped at different precursor flows and temperatures to determine optimal growth parameters for either crystal phase. To control the position and length of CPQDs, the time scale for crystal phase change is investigated. The micrometer size of the cantilevers allows temperature shifts of more than 100 °C within 0.1 s at the nanowire growth temperature, which can be much faster than the growth time for a single lattice layer. For controlling the crystal phase, the temperature change is found to be superior to precursor flow, which takes tens of seconds for the crystal phase formation to react. This µMOVPE approach may ultimately provide faster temperature control than bulk MOVPE systems and hence enable engineering sequences of CPQDs with quantum dot lengths and positions defined with atomic precision.

14.
Biomed Khim ; 70(5): 304-314, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39324195

RESUMO

The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity. Taking into consideration their high efficiency and diverse applications, nanowire-based biosensors demonstrate significant promise for commercialization and widespread application in medicine and related fields, making them an important area for future research and development.


Assuntos
Técnicas Biossensoriais , Nanofios , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Nanofios/química , Humanos , Biomarcadores/análise , Medicina de Precisão/métodos , Medicina de Precisão/instrumentação
15.
Nanotechnology ; 35(49)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39284322

RESUMO

The methodology of statistical analysis of cathodoluminescence (CL) intensity mappings on ensembles of several hundreds of InGaN/GaN nanowires (NWs) used to quantify non-radiative recombination centres (NRCs) was validated on InGaN/GaN NWs exhibiting spatially homogeneous cathodoluminescence at the scale of single NWs. Cathodoluminescence intensity variations obeying Poisson's statistics were assigned to the presence of randomly incorporated point defects acting as NRCs. Additionally, another type of NRCs, namely extended defects leading to spatially inhomogeneous cathodoluminescence intensity at the scale of single InGaN/GaN NWs are revealed by high resolution scanning transmission electron microscopy, geometrical phase analysis and two-beam diffraction conditions techniques. Such defects are responsible for deviations from Poisson's statistics, allowing one to achieve a rapid evaluation of the crystallographic and optical properties of several hundreds of NWs in a single cathodoluminescence intensity mapping experiment.

16.
ACS Appl Mater Interfaces ; 16(36): 48363-48373, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39221601

RESUMO

One-dimensional nanomaterials have become one of the most available nanoreinforcing agents for developing next-generation high-performance functional self-healing composites owing to their unique structural characteristics and surface electron structure. However, nanoscale control, structural regulation, and crystal growth are still enormous challenges in the synthesis of specific one-dimensional nanomaterials. Here, oxygen-defective MoO3-x nanowires with abundant surface dynamic bonding were successfully synthesized as novel nanofillers and photothermal response agents combined with a polyurethane matrix to construct composite elastomers, thus achieving mechanically enhanced and self-healing properties. Benefiting from the surface plasmon resonance of the MoO3-x nanowires and interfacial multiple dynamic bonding interactions, the composite elastomers demonstrated strong mechanical performance (with a strength of 31.45 MPa and elongation of 1167.73%) and ultrafast photothermal toughness self-healing performance (20 s and an efficiency of 94.34%). The introduction of MoO3-x nanowires allows the construction of unique three-dimensional cross-linked nanonetworks that can move and regulate interfacial dynamic interactions under 808 nm infrared laser stimulation, resulting in controlled mechanical and healing performance. Therefore, such special elastomers with strong photothermal responses and mechanical properties are expected to be useful in next-generation biological antibacterial materials, wearable devices, and artificial muscles.

17.
Small ; : e2406397, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223859

RESUMO

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

18.
ChemSusChem ; : e202400777, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292438

RESUMO

Silicon nanowires (SiNWs) have demonstrated great potential for energy storage due to their exceptional electrical conductivity, large surface area, and wide compositional range. Metal-assisted chemical etching (MACE) is a widely used top-down technique for fabricating silicon micro/nanostructures. SiNWs fabricated by MACE exhibit significant surface areas and diverse surface chemistry. Since the material composition and surface chemistry have a significant impact on the electrochemical energy storage performance, integrating SiNWs with diverse materials like porous carbon, metal oxides/sulfides, and polymers, can establish composites with excellent properties. Hence, it is imperative to meticulously fabricate SiNW-based materials with customizable morphologies and enhanced electrochemical energy-storage performance. This review provides an in-depth study of recent advancements in SiNW-based materials with enhanced performance for energy storage systems, such as supercapacitors (SCs) and lithium-ion batteries (LIBs). It includes a concise overview of the history, MACE synthesis, and characteristics of SiNWs. Further, it also explores the key elements that influence the MACE process of SiNWs and delves into structural engineering. Additionally, we introduce recent advances in SiNW-based materials for the design of high-performance energy-storage devices, namely SCs and LIBs. Finally, we present the crucial future prospects of SiNW-based materials for energy-storage applications.

19.
ACS Sens ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298751

RESUMO

Electrochemistry-based wearable and wireless sweat analysis is emerging as a promising noninvasive method for real-time health monitoring by tracking chemical and biological markers without the need for invasive blood sampling. It offers the potential to remotely monitor human sweat conditions in relation to metabolic health, stress, and electrolyte balance, which have implications for athletes, patients with chronic conditions, and individuals for the early detection and management of health issues. The state-of-the-art mainstream technology is dominated by the concept of a wearable microfluidic chip, typically based on elastomeric PDMS. While outstanding sensing performance can be realized, the design suffers from the poor permeability of PDMS, which could cause skin redness or irritation. Here, we introduce an omnidirectionally permeable, deformable, and wearable sweat analysis system based on gold nanowire sponges. We demonstrate the concept of all-in-one soft sponge electrochemistry, where the working, reference, and counter electrodes and electrolytes are all integrated within the sponge matrix. The intrinsic porosity of sponge in conjunction with vertically aligned gold nanowire electrodes gives rise to a high electrochemically active surface area of ∼67 cm2. Remarkably, this all-in-one sponge-based electrochemical system exhibited stable performance under a pressure of 10 kPa and 300% omnidirectional strain. The gold sponge biosensing electrodes could be sandwiched between two biocompatible sweat pads, which can serve as natural sweat collection and outflow layers. This naturally biocompatible and permeable platform can be integrated with wireless communication circuits, leading to a wireless sweat analysis system for the real-time monitoring of glucose, lactate, and pH during exercise.

20.
J Colloid Interface Sci ; 678(Pt C): 460-471, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39303564

RESUMO

The uncontrolled lithium (Li) dendrite growth significantly impacts the safety performance of polymer separators. To mitigate this growth, this study introduces Si3N4 into sulfonated poly(ether Ether Ketone) (SPEEK) and prepares Si3N4/SPEEK composite separators via electrospinning. At the interface between the Si3N4/SPEEK separator and the Li anode, the Si nanowires that form impede Li dendrite growth, thereby enhancing the electrochemical performance of lithium-ion batteries (LIBs). The Li deposition test of the 10 % Si3N4/SPEEK separator can operate for 1000 h without short-circuiting. Additionally, the LiFePO4||Li cell with the 10 % Si3N4/SPEEK separator shows improved initial discharge capacity (157.8 mAh g-1 at 1C) and superior rate performance (125 mAh g-1 at 10C). Moreover, the nano-scale Si3N4 endows the separator with robust thermal and mechanical properties. The FLIR observations reveal that the 10 % Si3N4/SPEEK separator maintains uniform thermal distribution and structural integrity even at 300 °C, ensuring safe battery operation at high temperatures. The additional load of the 10 % Si3N4/SPEEK separator can reach 10.2 mN, which enhances the puncture resistance of the separator. This work provides a solid approach for the application of SPEEK as a high-safety and high-rate LIB separator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA