Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2317707121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830105

RESUMO

Human pose, defined as the spatial relationships between body parts, carries instrumental information supporting the understanding of motion and action of a person. A substantial body of previous work has identified cortical areas responsive to images of bodies and different body parts. However, the neural basis underlying the visual perception of body part relationships has received less attention. To broaden our understanding of body perception, we analyzed high-resolution fMRI responses to a wide range of poses from over 4,000 complex natural scenes. Using ground-truth annotations and an application of three-dimensional (3D) pose reconstruction algorithms, we compared similarity patterns of cortical activity with similarity patterns built from human pose models with different levels of depth availability and viewpoint dependency. Targeting the challenge of explaining variance in complex natural image responses with interpretable models, we achieved statistically significant correlations between pose models and cortical activity patterns (though performance levels are substantially lower than the noise ceiling). We found that the 3D view-independent pose model, compared with two-dimensional models, better captures the activation from distinct cortical areas, including the right posterior superior temporal sulcus (pSTS). These areas, together with other pose-selective regions in the LOTC, form a broader, distributed cortical network with greater view-tolerance in more anterior patches. We interpret these findings in light of the computational complexity of natural body images, the wide range of visual tasks supported by pose structures, and possible shared principles for view-invariant processing between articulated objects and ordinary, rigid objects.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Percepção Visual/fisiologia , Postura/fisiologia , Adulto Jovem , Imageamento Tridimensional/métodos , Estimulação Luminosa/métodos , Algoritmos
2.
Vision Res ; 217: 108378, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458004

RESUMO

Human photoreceptors consist of cones, rods, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). First studied in circadian regulation and pupillary control, ipRGCs project to a variety of brain centers suggesting a broader involvement beyond non-visual functions. IpRGC responses are stable, long-lasting, and with a particular codification of photoreceptor signals. In comparison with the transient and adaptive nature of cone and rod signals, ipRGCs' signaling might provide an ecological advantage to different attributes of color vision. Previous studies have indicated melanopsin's influence on visual responses yet its contribution to color perception in humans remains debated. We summarized evidence and hypotheses (from physiology, psychophysics, and natural image statistics) about direct and indirect involvement of ipRGCs in human color vision, by first briefly assessing the current knowledge about the role of melanopsin and ipRGCs in vision and codification of spectral signals. We then approached the question about melanopsin activation eliciting a color percept, discussing studies using the silent substitution method. Finally, we explore various avenues through which ipRGCs might impact color perception indirectly, such as through involvement in peripheral color matching, post-receptoral pathways, color constancy, long-term chromatic adaptation, and chromatic induction. While there is consensus about the role of ipRGCs in brightness perception, confirming its direct contribution to human color perception requires further investigation. We proposed potential approaches for future research, emphasizing the need for empirical validation and methodological thoroughness to elucidate the exact role of ipRGCs in human color vision.


Assuntos
Visão de Cores , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção Visual , Opsinas de Bastonetes/fisiologia , Psicofísica , Luz
3.
Heliyon ; 10(5): e27414, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468958

RESUMO

Pareidolia are perceptions of recognizable images or meaningful patterns where none exist. In recent years, this phenomenon has been increasingly studied in healthy subjects and patients with neurological or psychiatric diseases. The current study examined pareidolia production in a group of 53 stroke patients and 82 neurologically healthy controls who performed a natural images task. We found a significant reduction of absolute pareidolia production in left- and right-hemispheric stroke patients, with right-hemispheric patients producing overall fewest pareidolic output. Responses were categorized into 28 distinct categories, with 'Animal', 'Human', 'Face', and 'Body parts' being the most common, accounting for 72% of all pareidolia. Regarding the percentages of the different categories of pareidolia, we found a significant reduction for the percentage of "Body parts" pareidolia in the left-hemispheric patient group as compared to the control group, while the percentage of this pareidolia type was not significantly reduced in right-hemispheric patients compared to healthy controls. These results support the hypothesis that pareidolia production may be influenced by local-global visual processing with the left hemisphere being involved in local and detailed analytical visual processing to a greater extent. As such, a lesion to the right hemisphere, that is believed to be critical for global visual processing, might explain the overall fewest pareidolic output produced by the right-hemispheric patients.

4.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423791

RESUMO

The cortical visual area, V4, has been considered to code contours that contribute to the intermediate-level representation of objects. The neural responses to the complex contour features intrinsic to natural contours are expected to clarify the essence of the representation. To approach the cortical coding of natural contours, we investigated the simultaneous coding of multiple contour features in monkey (Macaca fuscata) V4 neurons and their population-level representation. A substantial number of neurons showed significant tuning for two or more features such as curvature and closure, indicating that a substantial number of V4 neurons simultaneously code multiple contour features. A large portion of the neurons responded vigorously to acutely curved contours that surrounded the center of classical receptive field, suggesting that V4 neurons tend to code prominent features of object contours. The analysis of mutual information (MI) between the neural responses and each contour feature showed that most neurons exhibited similar magnitudes for each type of MI, indicating that many neurons showing the responses depended on multiple contour features. We next examined the population-level representation by using multidimensional scaling analysis. The neural preferences to the multiple contour features and that to natural stimuli compared with silhouette stimuli increased along with the primary and secondary axes, respectively, indicating the contribution of the multiple contour features and surface textures in the population responses. Our analyses suggested that V4 neurons simultaneously code multiple contour features in natural images and represent contour and surface properties in population.


Assuntos
Percepção de Forma , Córtex Visual , Animais , Macaca mulatta , Córtex Visual/fisiologia , Percepção de Forma/fisiologia , Neurônios/fisiologia , Estimulação Luminosa
5.
Int J Neural Syst ; 34(4): 2450016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372016

RESUMO

Constructing computational decoding models to account for the cortical representation of semantic information plays a crucial role in understanding visual perception. The human visual system processes interactive relationships among different objects when perceiving the semantic contents of natural visions. However, the existing semantic decoding models commonly regard categories as completely separate and independent visually and semantically and rarely consider the relationships from prior information. In this work, a novel semantic graph learning model was proposed to decode multiple semantic categories of perceived natural images from brain activity. The proposed model was validated on the functional magnetic resonance imaging data collected from five normal subjects while viewing 2750 natural images comprising 52 semantic categories. The results showed that the Graph Neural Network-based decoding model achieved higher accuracies than other deep neural network models. Moreover, the co-occurrence probability among semantic categories showed a significant correlation with the decoding accuracy. Additionally, the results suggested that semantic content organized in a hierarchical way with higher visual areas was more closely related to the internal visual experience. Together, this study provides a superior computational framework for multi-semantic decoding that supports the visual integration mechanism of semantic processing.


Assuntos
Mapeamento Encefálico , Semântica , Humanos , Mapeamento Encefálico/métodos , Percepção Visual , Redes Neurais de Computação , Aprendizagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
6.
Vision Res ; 208: 108234, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37104988

RESUMO

Despite the natural occurrence of global and local daylight changes in natural scenes, the human visual system typically adapts well to these changes and develops stable colour perception. In a previous study, the influence of daylight characterized by its Correlated Colour Temperatures (CCT) on different chromatic descriptors was analysed (Ojeda et al., 2017). The results showed that chromatic information is almost constant for CCT values above 14,000 K, with local extremes occurring in the range of low CCTs. The aim of this work is to extend the analysis of the CCT dependence of the illuminant to those that consider the spatio-chromatic structure, including second order descriptors (gradients, spectral slope, spectral signature, and PCA) and higher order descriptors (kurtosis, skewness, and number of relevant colours). Our results show that most of the descriptors exhibit horizontal asymptotic behaviour for CCTs above 15,000 K and local extremes in the range of 3,900 K-9,600 K. For those descriptors that could be analysed in CIELAB space, sufficient statistical evidence was obtained to consider skewness, kurtosis, and the independent spectral slopes of the L* channel as equal in the range of CCTs used. However, the slight variations in spectral signatures and the directions of the principal components when applying PCA to image patches are not statistically significant and cannot be considered equal under different illuminants. The number of relevant colours (NRC) exhibits sensitivity to temperature variations and behaves similarly to the other descriptors, due to its small number.


Assuntos
Percepção de Cores , Humanos , Cor , Temperatura
7.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433552

RESUMO

Clustering using fuzzy C-means (FCM) is a soft segmentation method that has been extensively investigated and successfully implemented in image segmentation. FCM is useful in various aspects, such as the segmentation of grayscale images. However, FCM has some limitations in terms of its selection of the initial cluster center. It can be easily trapped into local optima and is sensitive to noise, which is considered the most challenging issue in the FCM clustering algorithm. This paper proposes an approach to solve FCM problems in two phases. Firstly, to improve the balance between the exploration and exploitation of improved global best-guided artificial bee colony algorithm (IABC). This is achieved using a new search probability model called PIABC that improves the exploration process by choosing the best source of food which directly affects the exploitation process in IABC. Secondly, the fuzzy clustering algorithm based on PIABC, abbreviated as PIABC-FCM, uses the balancing of PIABC to avoid getting stuck into local optima while searching for the best solution having a set of cluster center locations of FCM. The proposed method was evaluated using grayscale images. The performance of the proposed approach shows promising outcomes when compared with other related works.


Assuntos
Lógica Fuzzy , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo , Análise por Conglomerados , Algoritmos , Probabilidade
8.
Eur J Neurosci ; 56(11): 6022-6038, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113866

RESUMO

Neural mechanisms of face perception are predominantly studied in well-controlled experimental settings that involve random stimulus sequences and fixed eye positions. Although powerful, the employed paradigms are far from what constitutes natural vision. Here, we demonstrate the feasibility of ecologically more valid experimental paradigms using natural viewing behaviour, by combining a free viewing paradigm on natural scenes, free of photographer bias, with advanced data processing techniques that correct for overlap effects and co-varying non-linear dependencies of multiple eye movement parameters. We validate this approach by replicating classic N170 effects in neural responses, triggered by fixation onsets (fixation event-related potentials [fERPs]). Importantly, besides finding a strong correlation between both experiments, our more natural stimulus paradigm yielded smaller variability between subjects than the classic setup. Moving beyond classic temporal and spatial effect locations, our experiment furthermore revealed previously unknown signatures of face processing: This includes category-specific modulation of the event-related potential (ERP)'s amplitude even before fixation onset, as well as adaptation effects across subsequent fixations depending on their history.


Assuntos
Reconhecimento Facial , Humanos , Reconhecimento Facial/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Movimentos Oculares , Adaptação Fisiológica , Estimulação Luminosa
9.
Cell Rep ; 40(13): 111438, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170812

RESUMO

The primary visual cortex signals the onset of light and dark stimuli with ON and OFF cortical pathways. Here, we demonstrate that both pathways generate similar response increments to large homogeneous surfaces and their response average increases with surface brightness. We show that, in cat visual cortex, response dominance from ON or OFF pathways is bimodally distributed when stimuli are smaller than one receptive field center but unimodally distributed when they are larger. Moreover, whereas small bright stimuli drive opposite responses from ON and OFF pathways (increased versus suppressed activity), large bright surfaces drive similar response increments. We show that this size-brightness relation emerges because strong illumination increases the size of light surfaces in nature and both ON and OFF cortical neurons receive input from ON thalamic pathways. We conclude that visual scenes are perceived as brighter when the average response increments from ON and OFF cortical pathways become stronger.


Assuntos
Córtex Visual , Vias Visuais , Neurônios/fisiologia , Estimulação Luminosa , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
10.
Neural Netw ; 153: 444-449, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809373

RESUMO

The visual area V4 has been considered to play a crucial role in the intermediate representation of objects, where low-level image features are transformed into object-level representations. We estimated the intrinsic dimensionality in V4 for the representation of local patches generated from natural scenes. The dimensionality was approximately 40, which is approximately half of that reported in IT for the representation of whole natural objects. The analyses of the estimated dimensionality suggest both common and independent representations that code contour shapes and/or surfaces with textures, implying a relatively complex and mixed representation in the intermediate-level area.


Assuntos
Percepção de Forma , Córtex Visual , Animais , Macaca mulatta , Neurônios , Reconhecimento Visual de Modelos , Estimulação Luminosa/métodos , Vias Visuais
11.
Front Cell Neurosci ; 16: 857071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450210

RESUMO

Aerial predators, such as the dragonfly, determine the position and movement of their prey even when both are moving through complex, natural scenes. This task is likely supported by a group of neurons in the optic lobe which respond to moving targets that subtend less than a few degrees. These Small Target Motion Detector (STMD) neurons are tuned to both target size and velocity, whilst also exhibiting facilitated responses to targets traveling along continuous trajectories. When presented with a pair of targets, some STMDs generate spiking activity that represent a competitive selection of one target, as if the alternative does not exist (i.e., selective attention). Here, we describe intracellular responses of CSTMD1 (an identified STMD) to the visual presentation of targets embedded within cluttered, natural scenes. We examine CSTMD1 response changes to target contrast, as well as a range of target and background velocities. We find that background motion affects CSTMD1 responses via the competitive selection between features within the natural scene. Here, robust discrimination of our artificially embedded "target" is limited to scenarios when its velocity is matched to, or greater than, the background velocity. Additionally, the background's direction of motion affects discriminability, though not in the manner observed in STMDs of other flying insects. Our results highlight that CSTMD1's competitive responses are to those features best matched to the neuron's underlying spatiotemporal tuning, whether from the embedded target or other features in the background clutter. In many scenarios, CSTMD1 responds robustly to targets moving through cluttered scenes. However, whether this neuronal system could underlie the task of competitively selecting slow moving prey against fast-moving backgrounds remains an open question.

12.
Perception ; 51(4): 244-262, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35296165

RESUMO

The THINGS database is a freely available stimulus set that has the potential to facilitate the generation of theory that bridges multiple areas within cognitive neuroscience. The database consists of 26,107 high quality digital photos that are sorted into 1,854 concepts. While a valuable resource, relatively few technical details relevant to the design of studies in cognitive neuroscience have been described. We present an analysis of two key low-level properties of THINGS images, luminance and luminance contrast. These image statistics are known to influence common physiological and neural correlates of perceptual and cognitive processes. In general, we found that the distributions of luminance and contrast are in close agreement with the statistics of natural images reported previously. However, we found that image concepts are separable in their luminance and contrast: we show that luminance and contrast alone are sufficient to classify images into their concepts with above chance accuracy. We describe how these factors may confound studies using the THINGS images, and suggest simple controls that can be implemented a priori or post-hoc. We discuss the importance of using such natural images as stimuli in psychological research.


Assuntos
Sensibilidades de Contraste , Visão Ocular , Bases de Dados Factuais , Humanos
13.
Elife ; 112022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35285798

RESUMO

Neural circuits are constructed from nonlinear building blocks, and not surprisingly overall circuit behavior is often strongly nonlinear. But neural circuits can also behave near linearly, and some circuits shift from linear to nonlinear behavior depending on stimulus conditions. Such control of nonlinear circuit behavior is fundamental to neural computation. Here, we study a surprising stimulus dependence of the responses of macaque On (but not Off) parasol retinal ganglion cells: these cells respond nonlinearly to spatial structure in some stimuli but near linearly to spatial structure in others, including natural inputs. We show that these differences in the linearity of the integration of spatial inputs can be explained by a shift in the balance of excitatory and inhibitory synaptic inputs that originates at least partially from adaptation in the cone photoreceptors. More generally, this highlights how subtle asymmetries in signaling - here in the cone signals - can qualitatively alter circuit computation.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Ganglionares da Retina , Animais , Macaca , Estimulação Luminosa/métodos , Primatas , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia
14.
Vision (Basel) ; 7(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36649048

RESUMO

Binocular disparity is an important cue to three-dimensional shape. We assessed the contribution of this cue to the reliability and consistency of depth in stereoscopic photographs of natural scenes. Observers viewed photographs of cluttered scenes while adjusting a gauge figure to indicate the apparent three-dimensional orientation of the surfaces of objects. The gauge figure was positioned on the surfaces of objects at multiple points in the scene, and settings were made under monocular and binocular, stereoscopic viewing. Settings were used to create a depth relief map, indicating the apparent three-dimensional structure of the scene. We found that binocular cues increased the magnitude of apparent depth, the reliability of settings across repeated measures, and the consistency of perceived depth across participants. These results show that binocular cues make an important contribution to the precise and accurate perception of depth in natural scenes that contain multiple pictorial cues.

15.
Eur J Neurosci ; 54(10): 7575-7598, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34661322

RESUMO

It has been suggested that aesthetically pleasing stimuli are processed efficiently by the visual system, whereas uncomfortable stimuli are processed inefficiently. This study consists of a series of three experiments investigating this idea using a range of images of abstract artworks, photographs of natural scenes, and computer-generated stimuli previously shown to be uncomfortable. Subjective judgements and neural correlates were measured using electroencephalogram (EEG) (steady-state visual evoked potentials, SSVEPs). In addition, global image statistics (contrast, Fourier amplitude spectral slope and fractal dimension) were taken into account. When effects of physical image contrast were controlled, fractal dimension predicted discomfort judgements, suggesting the SSVEP response is more likely to be influenced by distribution of edges than the spectral slope. Importantly, when effects of physical contrast and fractal dimension were accounted for using linear mixed effects modelling, SSVEP responses predicted subjective judgements of images. Specifically, when stimuli were not matched for perceived contrast, there was a positive relationship between SSVEP responses and how pleasing a stimulus was judged to be, and conversely a negative relationship between discomfort and SSVEP response. This is significant as it shows that the neural responses in early visual areas contribute to the subjective (un)pleasantness of images, although the results of this study do not provide clear support for the theory of efficient coding as the cause of perceived pleasantness or discomfort of images, and so other explanations need to be considered.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Exame Neurológico , Estimulação Luminosa
16.
Trends Cogn Sci ; 25(9): 788-801, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364792

RESUMO

Generative adversarial networks (GANs) enable computers to learn complex data distributions and sample from these distributions. When applied to the visual domain, this allows artificial, yet photorealistic images to be synthesized. Their success at this very challenging task triggered an explosion of research within the field of artificial intelligence (AI), yielding various new GAN findings and applications. After explaining the core principles behind GANs and reviewing recent GAN innovations, we illustrate how they can be applied to tackle thorny theoretical and methodological problems in cognitive science. We focus on how GANs can reveal hidden structure in internal representations and how they offer a valuable new compromise in the trade-off between experimental control and ecological validity.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Ciência Cognitiva , Computadores , Humanos , Redes Neurais de Computação
17.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924510

RESUMO

In this paper, a novel method to modify color images for the protanopia and deuteranopia color vision deficiencies is proposed. The method admits certain criteria, such as preserving image naturalness and color contrast enhancement. Four modules are employed in the process. First, fuzzy clustering-based color segmentation extracts key colors (which are the cluster centers) of the input image. Second, the key colors are mapped onto the CIE 1931 chromaticity diagram. Then, using the concept of confusion line (i.e., loci of colors confused by the color-blind), a sophisticated mechanism translates (i.e., removes) key colors lying on the same confusion line to different confusion lines so that they can be discriminated by the color-blind. In the third module, the key colors are further adapted by optimizing a regularized objective function that combines the aforementioned criteria. Fourth, the recolored image is obtained by color transfer that involves the adapted key colors and the associated fuzzy clusters. Three related methods are compared with the proposed one, using two performance indices, and evaluated by several experiments over 195 natural images and six digitized art paintings. The main outcomes of the comparative analysis are as follows. (a) Quantitative evaluation based on nonparametric statistical analysis is conducted by comparing the proposed method to each one of the other three methods for protanopia and deuteranopia, and for each index. In most of the comparisons, the Bonferroni adjusted p-values are <0.015, favoring the superiority of the proposed method. (b) Qualitative evaluation verifies the aesthetic appearance of the recolored images.


Assuntos
Defeitos da Visão Cromática , Análise por Conglomerados , Cor , Percepção de Cores , Humanos
18.
J Neurophysiol ; 125(6): 2125-2134, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909494

RESUMO

Visual systems evolve to process the stimuli that arise in the organism's natural environment, and hence, to fully understand the neural computations in the visual system, it is important to measure behavioral and neural responses to natural visual stimuli. Here, we measured psychometric and neurometric functions in the macaque monkey for detection of a windowed sine-wave target in uniform backgrounds and in natural backgrounds of various contrasts. The neurometric functions were obtained by near-optimal decoding of voltage-sensitive-dye-imaging (VSDI) responses at the retinotopic scale in primary visual cortex (V1). The results were compared with previous human psychophysical measurements made under the same conditions. We found that human and macaque behavioral thresholds followed the generalized Weber's law as function of contrast, and that both the slopes and the intercepts of the threshold as a function of background contrast match each other up to a single scale factor. We also found that the neurometric thresholds followed the generalized Weber's law with slopes and intercepts matching the behavioral slopes and intercepts up to a single scale factor. We conclude that human and macaque ability to detect targets in natural backgrounds are affected in the same way by background contrast, that these effects are consistent with population decoding at the retinotopic scale by down-stream circuits, and that the macaque monkey is an appropriate animal model for gaining an understanding of the neural mechanisms in humans for detecting targets in natural backgrounds. Finally, we discuss limitations of the current study and potential next steps.NEW & NOTEWORTHY We measured macaque detection performance in natural images and compared their performance to the detection sensitivity of neurophysiological responses recorded in the primary visual cortex (V1), and to the performance of human subjects. We found that 1) human and macaque behavioral performances are in quantitative agreement and 2) are consistent with near-optimal decoding of V1 population responses.


Assuntos
Sensibilidades de Contraste/fisiologia , Percepção de Profundidade/fisiologia , Discriminação Psicológica/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Mascaramento Perceptivo/fisiologia , Córtex Visual Primário/fisiologia , Limiar Sensorial/fisiologia , Animais , Comportamento Animal/fisiologia , Limiar Diferencial , Humanos , Macaca , Especificidade da Espécie , Análise e Desempenho de Tarefas , Imagens com Corantes Sensíveis à Voltagem
19.
Cogsci ; 43: 223-229, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35969705

RESUMO

Perceiving 3D structure in natural images is an immense computational challenge for the visual system. While many previous studies focused on the perception of rigid 3D objects, we applied a novel method on a common set of non-rigid objects-static images of the human body in the natural world. We investigated to what extent human ability to interpret 3D poses in natural images depends on the typicality of the underlying 3D pose and the informativeness of the viewpoint. Using a novel 2AFC pose matching task, we measured how well subjects were able to match a target natural pose image with one of two comparison, synthetic body images from a different viewpoint-one was rendered with the same 3D pose parameters as the target while the other was a distractor rendered with added noises on joint angles. We found that performance for typical poses was measurably better than atypical poses; however, we found no significant difference between informative and less informative viewpoints. Further comparisons of 2D and 3D pose matching models on the same task showed that 3D body knowledge is particularly important when interpreting images of atypical poses. These results suggested that human ability to interpret 3D poses depends on pose typicality but not viewpoint informativeness, and that humans probably use prior knowledge of 3D pose structures.

20.
Elife ; 92020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146609

RESUMO

The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas. The optimal reconstruction filter for each RGC - its visual message - reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. ON and OFF cells conveyed largely independent, complementary representations, and parasol and midget cells conveyed distinct features. Correlated activity and nonlinearities had statistically significant but minor effects on reconstruction. Simulated reconstructions, using linear-nonlinear cascade models of RGC light responses that incorporated measured spatial properties and nonlinearities, produced similar results. Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results are relevant for natural vision.


Vision begins in the retina, the layer of tissue that lines the back of the eye. Light-sensitive cells called rods and cones absorb incoming light and convert it into electrical signals. They pass these signals to neurons called retinal ganglion cells (RGCs), which convert them into electrical signals called spikes. Spikes from RGCs then travel along the optic nerve to the brain. They are the only source of visual information that the brain receives. From this information, the brain constructs our entire visual world. The primate retina contains roughly 20 types of RGCs. Each encodes a different visual feature, such as the presence of bright spots of a certain size, or information about texture and movement. But exactly what input each RGC sends to the brain, and how the brain uses this information, is unclear. Brackbill et al. set out to answer these questions by measuring and analyzing the electrical activity in isolated retinas from macaque monkeys. Studying the macaque retina was important because the primate visual system differs from that of other species in several ways. These include the numbers and types of RGCs present in the retina. These primates are also similar to humans in their high-resolution central vision and trichromatic color vision. Using electrode arrays to monitor hundreds of RGCs at the same time, Brackbill et al. recorded the responses of macaque retinas to real-life images of landscapes, objects, animals or people. Based on these recordings, plus existing knowledge about RGC responses, Brackbill et al. then attempted to reconstruct the original images using just the electrical activity recorded. The resulting reconstructions were similar across all retinas tested. Moreover, they showed a striking resemblance to the original images. These results made it possible to comprehend how the light-response properties of each cell represent visual information that can be used by the brain. Understanding how macaque retinas work in natural conditions is critical to decoding how our own retinas process and convey information. A better knowledge of how the brain uses this input to generate images could ultimately make it possible to design artificial retinas to restore vision in patients with certain forms of blindness.


Assuntos
Células Ganglionares da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Macaca fascicularis , Macaca mulatta , Microeletrodos , Estimulação Luminosa , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA