Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 90(5): 342-351, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35920867

RESUMO

One of the most popular measures in the analysis of protein sequence evolution is the ratio of nonsynonymous distance (dN) to synonymous distance (dS). Under the assumption that synonymous substitutions in the coding region are selectively neutral, the dN/dS ratio can be used to statistically detect the adaptive evolution (or purifying selection) if dN/dS > 1 (or dN/dS < 1) significantly. However, due to strong structural constraints and/or variable functional constraints imposed on amino acid sites, most encoding genes in most species have demonstrated dN/dS < 1. Consequently, the statistical power for testing dN/dS = 1 may be insufficient to distinguish between different selection modes. In this paper, we propose a more powerful test, called dN/dS-H, in which a new parameter H, a relative measure of rate variation among sites, was introduced. Given the condition of strong purifying selections at some sites, the dN/dS-H model predicts dN/dS = 1-H for neutral evolution, dN/dS < 1-H for nearly neutral selection, and dN/dS > 1-H for adaptive evolution. The potential of this new method for resolving the neutral-adaptive debates is illustrated by the protein sequence evolution in vertebrates, Drosophila and yeasts, as well as somatic cancer evolution (specialized as the CN/CS-H test).


Assuntos
Neoplasias , Seleção Genética , Aminoácidos/genética , Animais , Evolução Molecular , Neoplasias/genética , Filogenia , Proteínas/genética
2.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983052

RESUMO

Despite the importance of natural selection in species' evolutionary history, phylogenetic methods that take into account population-level processes typically ignore selection. The assumption of neutrality is often based on the idea that selection occurs at a minority of loci in the genome and is unlikely to compromise phylogenetic inferences significantly. However, genome-wide processes like GC-bias and some variation segregating at the coding regions are known to evolve in the nearly neutral range. As we are now using genome-wide data to estimate species trees, it is natural to ask whether weak but pervasive selection is likely to blur species tree inferences. We developed a polymorphism-aware phylogenetic model tailored for measuring signatures of nucleotide usage biases to test the impact of selection in the species tree. Our analyses indicate that although the inferred relationships among species are not significantly compromised, the genetic distances are systematically underestimated in a node-height-dependent manner: that is, the deeper nodes tend to be more underestimated than the shallow ones. Such biases have implications for molecular dating. We dated the evolutionary history of 30 worldwide fruit fly populations, and we found signatures of GC-bias considerably affecting the estimated divergence times (up to 23%) in the neutral model. Our findings call for the need to account for selection when quantifying divergence or dating species evolution.


Assuntos
Uso do Códon , Evolução Molecular , Animais , Uso do Códon/genética , Drosophila , Nucleotídeos , Filogenia , Seleção Genética
3.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34190972

RESUMO

The nearly neutral theory predicts specific relations between effective population size (Ne) and patterns of divergence and polymorphism, which depend on the shape of the distribution of fitness effects (DFE) of new mutations. However, testing these relations is not straightforward, owing to the difficulty in estimating Ne. Here, we introduce an integrative framework allowing for an explicit reconstruction of the phylogenetic history of Ne, thus leading to a quantitative test of the nearly neutral theory and an estimation of the allometric scaling of the ratios of nonsynonymous over synonymous polymorphism (πN/πS) and divergence (dN/dS) with respect to Ne. As an illustration, we applied our method to primates, for which the nearly neutral predictions were mostly verified. Under a purely nearly neutral model with a constant DFE across species, we find that the variation in πN/πS and dN/dS as a function of Ne is too large to be compatible with current estimates of the DFE based on site frequency spectra. The reconstructed history of Ne shows a 10-fold variation across primates. The mutation rate per generation u, also reconstructed over the tree by the method, varies over a 3-fold range and is negatively correlated with Ne. As a result of these opposing trends for Ne and u, variation in πS is intermediate, primarily driven by Ne but substantially influenced by u. Altogether, our integrative framework provides a quantitative assessment of the role of Ne and u in modulating patterns of genetic variation, while giving a synthetic picture of their history over the clade.


Assuntos
Evolução Molecular , Seleção Genética , Animais , Variação Genética , Modelos Genéticos , Taxa de Mutação , Filogenia , Densidade Demográfica
4.
Phenomics ; 1(3): 105-112, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36939798

RESUMO

The determinative view of mutation penetrance is a fundamental assumption for the building of molecular evolutionary theory: individuals in the population with the same genotype have the same fitness effect. Since this view has been constantly challenged by experimental evidence, it is desirable to examine to what extent violation of this view could affect our understanding of molecular evolution. To this end, the author formulated a new theory of molecular evolution under a random model of penetrance: for any individual with the same mutational genotype, the coefficient of selection is a random variable. It follows that, in addition to the conventional N e-genetic drift (N e is the effective population size), the variance of penetrance among individuals (ε 2) represents a new type of genetic drift, coined by the ε 2-genetic drift. It has been demonstrated that these two genetic drifts together provided new insights on the nearly neutral evolution: the evolutionary rate is inversely related to the log-of-N e when the ε 2-genetic drift is nontrivial. This log-of-N e feature of ε 2-genetic drift did explain well why the d N /d S ratio (the nonsynonymous rate to the synonymous rate) in humans is only as twofold as that in mice, while the effective population size (N e) of mice is about two-magnitude larger than that of humans. It was estimated that, for the first time, the variance of random penetrance in mammalian genes was approximately ε 2 ≈ 5.89 × 10-3.

5.
Mol Biol Evol ; 38(3): 1199-1208, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33045094

RESUMO

In recent years, codon substitution models based on the mutation-selection principle have been extended for the purpose of detecting signatures of adaptive evolution in protein-coding genes. However, the approaches used to date have either focused on detecting global signals of adaptive regimes-across the entire gene-or on contexts where experimentally derived, site-specific amino acid fitness profiles are available. Here, we present a Bayesian site-heterogeneous mutation-selection framework for site-specific detection of adaptive substitution regimes given a protein-coding DNA alignment. We offer implementations, briefly present simulation results, and apply the approach on a few real data sets. Our analyses suggest that the new approach shows greater sensitivity than traditional methods. However, more study is required to assess the impact of potential model violations on the method, and gain a greater empirical sense its behavior on a broader range of real data sets. We propose an outline of such a research program.


Assuntos
Evolução Biológica , Técnicas Genéticas , Modelos Genéticos , Mutação , Seleção Genética , Teorema de Bayes
6.
Mol Biol Evol ; 34(1): 204-214, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744408

RESUMO

Codon substitution models have traditionally attempted to uncover signatures of adaptation within protein-coding genes by contrasting the rates of synonymous and non-synonymous substitutions. Another modeling approach, known as the mutation-selection framework, attempts to explicitly account for selective patterns at the amino acid level, with some approaches allowing for heterogeneity in these patterns across codon sites. Under such a model, substitutions at a given position occur at the neutral or nearly neutral rate when they are synonymous, or when they correspond to replacements between amino acids of similar fitness; substitutions from high to low (low to high) fitness amino acids have comparatively low (high) rates. Here, we study the use of such a mutation-selection framework as a null model for the detection of adaptation. Following previous works in this direction, we include a deviation parameter that has the effect of capturing the surplus, or deficit, in non-synonymous rates, relative to what would be expected under a mutation-selection modeling framework that includes a Dirichlet process approach to account for across-codon-site variation in amino acid fitness profiles. We use simulations, along with a few real data sets, to study the behavior of the approach, and find it to have good power with a low false-positive rate. Altogether, we emphasize the potential of recent mutation-selection models in the detection of adaptation, calling for further model refinements as well as large-scale applications.


Assuntos
Adaptação Biológica/genética , Substituição de Aminoácidos , Códon , Modelos Genéticos , Seleção Genética/genética , Aminoácidos/genética , Teorema de Bayes , Simulação por Computador , Epistasia Genética , Evolução Molecular , Heterogeneidade Genética , Mutação , Taxa de Mutação , Filogenia
7.
Genome Biol Evol ; 6(6): 1437-47, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24966225

RESUMO

Splice sites (SSs) are short sequences that are crucial for proper mRNA splicing in eukaryotic cells, and therefore can be expected to be shaped by strong selection. Nevertheless, in mammals and in other intron-rich organisms, many of the SSs often involve nonconsensus (Nc), rather than consensus (Cn), nucleotides, and beyond the two critical nucleotides, the SSs are not perfectly conserved between species. Here, we compare the SS sequences between primates, and between Drosophila fruit flies, to reveal the pattern of selection acting at SSs. Cn-to-Nc substitutions are less frequent, and Nc-to-Cn substitutions are more frequent, than neutrally expected, indicating, respectively, negative and positive selection. This selection is relatively weak (1 < |4Nes| < 4), and has a similar efficiency in primates and in Drosophila. Within some nucleotide positions, the positive selection in favor of Nc-to-Cn substitutions is weaker than the negative selection maintaining already established Cn nucleotides; this difference is due to site-specific negative selection favoring current Nc nucleotides. In general, however, the strength of negative selection protecting the Cn alleles is similar in magnitude to the strength of positive selection favoring replacement of Nc alleles, as expected under the simple nearly neutral turnover. In summary, although a fraction of the Nc nucleotides within SSs is maintained by selection, the abundance of deleterious nucleotides in this class suggests a substantial genome-wide drift load.


Assuntos
Drosophila/genética , Primatas/genética , Sítios de Splice de RNA , Seleção Genética , Animais , Sequência de Bases , Deriva Genética , Humanos , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA