RESUMO
Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by multi-organ involvement and the presence of autoantibodies, pathogenic factors that can serve as diagnostic biomarkers. The current research has been focusing on exploring specific autoantigens with clinical relevance for SLE subtypes. In line with this objective, this study investigated potential antigenic targets associated with specific phenotypes in SLE by leveraging an omics-based approach combined with immunoassay techniques. Methods: A transcriptomic analysis was conducted in a cohort of 70 SLE patients to identify genes significantly correlated to the relevant phenotype. Epitope mapping and sequence analysis techniques were used to predict autoantigens, and the corresponding antibodies were subsequently quantified by enzyme-linked immunosorbent assay (ELISA) and validated by Western blot. Results: Transcriptomic data analysis revealed a group of hub genes exhibiting a significant correlation with the neuropsychiatric phenotype and a positive relationship with platelets. Subsequent epitope prediction for the corresponding proteins highlighted vasodilator-stimulated phosphoprotein (VASP) as a potential autoantigen. Moreover, ELISA and immunoblotting confirmed that the anti-VASP antibody present in the serum was significantly elevated in SLE patients with neuropsychiatric involvement and positively associated with demyelination. Conclusion: VASP harbors autoantigenic epitopes associated with neuropsychiatric phenotype, especially the demyelination symptom in SLE, and its antibodies may serve as promising biomarkers in this disease.
RESUMO
Enteric symptoms are hallmarks of prodromal Parkinson's disease (PD) that appear decades before the onset of motor symptoms and diagnosis. PD patients possess circulating T cells that recognize specific α-synuclein (α-syn)-derived epitopes. One epitope, α-syn32-46, binds with strong affinity to the HLA-DRB1∗15:01 allele implicated in autoimmune diseases. We report that α-syn32-46 immunization in a mouse expressing human HLA-DRB1∗15:01 triggers intestinal inflammation, leading to loss of enteric neurons, damaged enteric dopaminergic neurons, constipation, and weight loss. α-Syn32-46 immunization activates innate and adaptive immune gene signatures in the gut and induces changes in the CD4+ TH1/TH17 transcriptome that resemble tissue-resident memory (TRM) cells found in mucosal barriers during inflammation. Depletion of CD4+, but not CD8+, T cells partially rescues enteric neurodegeneration. Therefore, interaction of α-syn32-46 and HLA-DRB1∗15:0 is critical for gut inflammation and CD4+ T cell-mediated loss of enteric neurons in humanized mice, suggesting mechanisms that may underlie prodromal enteric PD.
Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Cadeias HLA-DRB1/genética , Epitopos , Neurônios Dopaminérgicos/metabolismo , InflamaçãoRESUMO
OBJECTIVE: The discovery and characterization of tumor associated antigens is increasingly important to advance the field of immuno-oncology. In this regard, labyrinthin has been implicated as a neoantigen found on the cell surface of adenocarcinomas. Data on the (1) topology, (2) amino acid (a.a.) homology analyses and (3) cell surface localization of labyrinthin by fluorescent activated cell sorter (FACS) are studied in support of labyrinthin as a novel, pan-adenocarcinoma marker. RESULTS: Bioinformatics analyses predict labyrinthin as a type II protein with calcium binding domain(s), N-myristoylation sites, and kinase II phosphorylation sites. Sequence homologies for labyrinthin (255 a.a.) were found vs. the intracellular aspartyl/asparaginyl beta-hydroxylase (ASPH; 758 a.a.) and the ASPH-gene related protein junctate (299 a.a.), which are both type II proteins. Labyrinthin was detected by FACS on only non-permeablized A549 human lung adenocarcinoma cells, but not on normal WI-38 human lung fibroblasts nor primary cultures of normal human glandular-related cells. Microscopic images of immunofluorescent labelled MCA 44-3A6 binding to A549 cells at random cell cycle stages complement the FACS results by further showing that labyrinthin persisted on the cell surfaces along with some cell internalization for greater than 20 min.
Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Biomarcadores , Neoplasias Pulmonares/patologiaRESUMO
PURPOSE OF REVIEW: During the past few years there has been an expansion in our understanding of gene fusions and translocations involved in cancer of the sinonasal tract. Here we review the downstream biologic effects, clinical characteristics, and pathologic features of these tumors. The molecular consequences and neo-antigens resulting from these chromosomal aberrations are considered and targets for current and future clinical trials discussed. RECENT FINDINGS: Several new, clinically relevant, chromosomal aberrations have been discovered and evaluated to varying degrees in sinonasal tumors including DEK::AFF2, BRD4::NUT, ADCK4::NUMBL, and ETV6::NTRK3. Sinonasal malignancies demonstrate a diverse genetic landscape and varying clinical courses. Recent studies illustrate that gene fusions and translocations may play a role in carcinogenesis in certain sinonasal tumor subtypes and may be used to develop new biomarker-driven and patient-centered treatments.
Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas Nucleares/genética , Neoplasias/genética , Translocação Genética , Fusão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas de Ciclo CelularRESUMO
Autophagy constitutes a well-known homeostatic and catabolic process that is responsible for degradation and recycling of cellular components. It is a key regulatory mechanism for several cellular functions, whereas its dysregulation is associated with tumorigenesis, tumor-stroma interactions and resistance to cancer therapy. A growing body of evidence has proven that autophagy affects the tumor microenvironment, while it is also considered a key factor for function of several immune cells, such as APCs, T-cells, and macrophages. Moreover, it is implicated in presentation of neo-antigens of tumor cells in both MHC-I and MHC-II in dendritic cells (DCs) in functional activity of immune cells by creating T-cell memory, as well as in cross-presentation of neo-antigens for MHC-I presentation and the internalization process. Currently, autophagy has a crucial role in immunotherapy. Emergence of cancer immunotherapy has already shown some remarkable results, having changed therapeutic strategy in clinical practice for several cancer types. Despite these promising long-term responses, several patients seem to lack the ability to respond to immune checkpoint inhibitors. Thus, autophagy through neo-antigen presentation is a potential target in order to strengthen or attenuate the effects of immunotherapy against different types of cancer. This review will shed light on the recent advances and future directions of autophagy-dependent neo-antigen presentation and consequently its role in immunotherapy for malignant tumors.
Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Células Dendríticas , Autofagia , Apresentação de Antígeno , Antígenos/metabolismo , Neoplasias/metabolismoRESUMO
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Assuntos
Matriz Extracelular , Resistência à Insulina , Biomarcadores , Fibrose , Humanos , PulmãoRESUMO
Mass-spectrometry based immunopeptidomics has provided unprecedented insights into antigen presentation, not only charting an enormous ligandome of self-antigens, but also cancer neoantigens and peptide antigens harbouring post-translational modifications. Here we concentrate on the latter, focusing on the small subset of HLA Class I peptides (less than 1%) that has been observed to be post-translationally modified (PTM) by a O-linked N-acetylglucosamine (GlcNAc). Just like neoantigens these modified antigens may have specific immunomodulatory functions. Here we compiled from literature, and a new dataset originating from the JY B cell lymphoblastoid cell line, a concise albeit comprehensive list of O-GlcNAcylated HLA class I peptides. This cumulative list of O-GlcNAcylated HLA peptides were derived from normal and cancerous origin, as well as tissue specimen. Remarkably, the overlap in detected O-GlcNAcylated HLA peptides as well as their source proteins is strikingly high. Most of the O-GlcNAcylated HLA peptides originate from nuclear proteins, notably transcription factors. From this list, we extract that O-GlcNAcylated HLA Class I peptides are preferentially presented by the HLA-B*07:02 allele. This allele loads peptides with a Proline residue anchor at position 2, and features a binding groove that can accommodate well the recently proposed consensus sequence for O-GlcNAcylation, P(V/A/T/S)g(S/T), essentially explaining why HLA-B*07:02 is a favoured binding allele. The observations drawn from the compiled list, may assist in the prediction of novel O-GlcNAcylated HLA antigens, which will be best presented by patients harbouring HLA-B*07:02 or related alleles that use Proline as anchoring residue.
Assuntos
Linfoma de Células B/metabolismo , Acetilglucosamina/metabolismo , Apresentação de Antígeno , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Glicosilação , Antígeno HLA-B7/metabolismo , Humanos , Espectrometria de Massas , Antígenos O/metabolismo , Peptídeos , Processamento de Proteína Pós-Traducional , ProteômicaRESUMO
Islet antigen reactive T cells play a key role in promoting beta cell destruction in type 1 diabetes (T1D). Self-reactive T cells are typically deleted through negative selection in the thymus or deviated to a regulatory phenotype. Nevertheless, those processes are imperfect such that even healthy individuals have a reservoir of potentially autoreactive T cells. What remains less clear is how tolerance is lost to insulin and other beta cell specific antigens. Islet autoantibodies, the best predictor of disease risk, are known to recognize classical antigens such as proinsulin, GAD65, IA-2, and ZnT8. These antibodies are thought to be supported by the expansion of autoreactive CD4+ T cells that recognize these same antigenic targets. However, recent studies have identified new classes of non-genetically encoded epitopes that may reflect crucial gaps in central and peripheral tolerance. Notably, some of these specificities, including epitopes from enzymatically post-translationally modified antigens and hybrid insulin peptides, are present at relatively high frequencies in the peripheral blood of patients with T1D. We conclude that CD4+ T cells that recognize non-genetically encoded epitopes are likely to make an important contribution to the progression of islet autoimmunity in T1D. We further propose that these classes of neo-epitopes should be considered as possible targets for strategies to induce antigen specific tolerance.
RESUMO
BACKGROUND: The calreticulin (CALR) exon 9 mutations that are identified in 20% of patients with Philadelphia chromosome negative chronic myeloproliferative neoplasms (MPN) generate immunogenic antigens. Thus, therapeutic cancer vaccination against mutant CALR could be a new treatment modality in CALR-mutant MPN. METHODS: The safety and efficacy of vaccination with the peptide CALRLong36 derived from the CALR exon 9 mutations was tested in a phase I clinical vaccination trial with montanide as adjuvant. Ten patients with CALRmut MPN were included in the trial and received 15 vaccines over the course of one year. The primary end point was evaluation of safety and toxicity of the vaccine. Secondary endpoint was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT03566446). RESULTS: Patients had a median age of 59.5 years and a median disease duration of 6.5 years. All patients received the intended 15 vaccines, and the vaccines were deemed safe and tolerable as only two grade three AE were detected, and none of these were considered to be related to the vaccine. A decline in platelet counts relative to the platelets counts at baseline was detected during the first 100 days, however this did not translate into neither a clinical nor a molecular response in any of the patients. Immunomonitoring revealed that four of 10 patients had an in vitro interferon (IFN)-γ ELISPOT response to the CALRLong36 peptide at baseline, and four additional patients displayed a response in ELISPOT upon receiving three or more vaccines. The amplitude of the immune response increased during the entire vaccination schedule for patients with essential thrombocythemia. In contrast, the immune response in patients with primary myelofibrosis did not increase after three vaccines. CONCLUSION: Therapeutic cancer vaccination with peptide vaccines derived from mutant CALR with montanide as an adjuvant, is safe and tolerable. The vaccines did not induce any clinical responses. However, the majority of patients displayed a marked T-cell response to the vaccine upon completion of the trial. This suggests that vaccines directed against mutant CALR may be used with other cancer therapeutic modalities to enhance the anti-tumor immune response.
RESUMO
The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.
RESUMO
Cell-cell interaction in skin homeostasis is tightly controlled by adherens junctions (AJs). Alterations in such regulation lead to melanoma development. However, mutations in AJs and their functional consequences are still largely unknown. Methods: Cadherin mutations in skin cutaneous melanoma were identified using sequencing data from TCGA dataset, followed by cross-validation with data from non-TCGA cohorts. Mutations with significant occurrence were subjected to structural prediction using MODELLER and functional protein simulation using GROMACS software. Neo-antigen prediction was carried out using NetMHCpan tool. Cell-based fluorescence reporter assay was used to validate ß-catenin activity in the presence of cadherin mutations. Clinical significance was analyzed using datasets from TCGA and other non-TCGA cohorts. Targeted gene exon sequencing and immunofluorescence staining on melanoma tissues were performed to confirm the in silico findings. Results: Highly frequent mutations in type-II classical cadherins were found in melanoma with one unique recurrent mutation (S524L) in the fifth domain of CDH6, which potentially destabilizes Ca2+-binding and cell-cell contacts. Mutational co-occurrence and physical dynamics analyses placed CDH6 at the center of the top-four mutated cadherins (core CDHs; all type-II), suggesting altered heterophilic interactions in melanoma development. Mutations in the intracellular domains significantly disturbed CDH6/ß-catenin complex formation, resulting in ß-catenin translocation into cytosol or nucleus and dysregulation of canonical Wnt/ß-catenin signaling. Although mutations in core CDH genes correlated with advanced cancer stages and lymph node invasion, the overall and disease-free survival times in those patients were longer in patients with wild-type. Peptide/MHC-I binding affinity predictions confirmed overall increased neo-antigen potentials of mutated cadherins, which associated with T-lymphocyte infiltration and better clinical outcomes after immunotherapy. Conclusion: Changes in cell-cell communications by somatic mutations in AJ cadherins function as one of mechanisms to trigger melanoma development. Certain mutations in AJs may serve as potential neo-antigens which conversely benefit patients for longer survival times.
Assuntos
Junções Aderentes/genética , Antígenos de Neoplasias/genética , Caderinas/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Junções Aderentes/imunologia , Junções Aderentes/patologia , Antígenos de Neoplasias/imunologia , Caderinas/imunologia , Caderinas/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Linhagem Celular Tumoral , Estudos Transversais , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/mortalidade , Melanoma/patologia , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica/genética , Ligação Proteica/imunologia , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , beta Catenina/metabolismoRESUMO
Lung cancer is one of the most commonly diagnosed cancer and despite therapeutic advances, mortality remains high. The long period of clinical latency associated with lung cancer provides an ideal window of opportunity to administer vaccines to at-risk individuals that can prevent tumor progression and initiate long-term anti-tumor immune surveillance. Here we describe a personalized vaccination regime that could be applied for both therapeutic and prophylactic prevention of lung cancer, based on the derivation of lung cancer cells from induced pluripotent stem cells. Stem cells from healthy mice were modified to express Cre-dependent KRASG12D and Trp53R172H prior to differentiation to lung progenitor cells. Subsequent viral delivery of Cre caused activation of exogenous driver mutations, resulting in transformation and development of lung cancer cells. iPSC-derived lung cancer cells were highly antigenically related to lung cancer cells induced in LSL-KRASG12D/+; Trp53R172H/+ transgenic mice and were antigenically unrelated to original pluripotent stem cells or pancreatic cancer cells derived using the same technological platform. For vaccination, induced lung cancer cells were infected with oncolytic Adenovirus or Vaccinia virus, to act as vaccine adjuvants, prior to delivery of vaccines sequentially to a murine inducible transgenic model of lung cancer. Application of this Virus-Infected, Reprogrammed Somatic cell-derived Tumor cell (VIReST) regime primed tumor-specific T cell responses that significantly prolonged survival in both subcutaneous post-vaccine challenge models and induced transgenic models of lung cancer, demonstrating that stem cell-derived prophylactic vaccines may be a feasible intervention for treatment or prevention of lung cancer development in at-risk individuals.
Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias Pulmonares/terapia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Imunização , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/prevenção & controle , Masculino , Camundongos , Camundongos Transgênicos , Vírus Oncolíticos/genética , Sobrevida , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução Genética , Resultado do Tratamento , Carga TumoralRESUMO
African Americans (AA) with Head and Neck Squamous Cell Carcinoma (HNSCC) have a worse disease prognosis than White patients despite adjusting for socio-economic factors, suggesting the potential biological contribution. Therefore, we investigated the genomic and immunological components that drive the differential tumor biology among race. We utilized the cancer genome atlas and cancer digital archive of HNSCC patients (1992-2013) for our study. We found that AA patients with HNSCC had a higher frequency of mutation compared to Whites in the key driver genes-P53, FAT1, CASP8 and HRAS. AA tumors also exhibited lower intratumoral infiltration of effector immune cells (CD8+, γδT, resting memory CD4+ and activated memory CD4+ T cells) with shorter survival than Whites. Unsupervised hierarchical clustering of differentially expressed genes demonstrated distinct gene clusters between AA and White patients with unique signaling pathway enrichments. Connectivity map analysis identified drugs (Neratinib and Selumetinib) that target aberrant PI3K/RAS/MEK signaling and may reduce racial disparity in therapy response.
Assuntos
Negro ou Afro-Americano/genética , Neoplasias de Cabeça e Pescoço/etnologia , Disparidades nos Níveis de Saúde , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço/etnologia , População Branca/genética , Adulto , Idoso , Benzimidazóis/uso terapêutico , Metilação de DNA , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidadeRESUMO
Introduction: Mutant KRAS is a genetic driver of multiple cancers that has challenged clinical anti-cancer therapeutics in the last 3 decades. Neo-antigens encoded by KRAS mutations have been identified as tumor-specific with high immunogenicity and can be used to deliver precision cancer vaccines to promote anti-tumor immune responses. KRAS mutation-based cancer vaccines have produced encouraging preclinical and clinical results. Cancer vaccines represent a promising approach to treat KRAS-driven cancers.Areas covered: In this review, we summarize the development and progress of vaccines targeting KRAS and evaluate their potential benefits and obstacles in the current landscape of therapy for KRAS-driven cancers.Expert opinion: KRAS mutation-based cancer vaccines can induce immunogenicity in patients with KRAS-driven cancers. However, the mechanisms of tumor suppression including cellular and molecular factors within the tumor microenvironment may limit vaccine efficacy. Combining KRAS-driven therapeutic cancer vaccines with other methods and adjuvants can circumvent immunosuppression and promote therapeutic successes.
Assuntos
Vacinas Anticâncer/administração & dosagem , Neoplasias/prevenção & controle , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Vacinas Anticâncer/imunologia , Humanos , Imunogenicidade da Vacina , Mutação , Neoplasias/genética , Neoplasias/imunologia , Microambiente TumoralRESUMO
Immune checkpoint blockade (ICPB) is a powerfully effective cancer therapy in some patients. Tumor neo-antigens are likely main targets for attack but it is not clear which and how many tumor mutations in individual cancers are actually antigenic, with or without ICPB therapy and their role as neo-antigen vaccines or as predictors of ICPB responses. To examine this, we interrogated the immune response to tumor neo-antigens in a murine model in which the tumor is induced by a natural human carcinogen (i.e. asbestos) and mimics its human counterpart (i.e. mesothelioma). We identified and screened 33 candidate neo-antigens, and found T cell responses against one candidate in tumor-bearing animals, mutant UQCRC2. Interestingly, we found a high degree of inter-animal variation in the magnitude of neo-antigen responses in otherwise identical mice. ICPB therapy with Cytotoxic T-lymphocyte-associated protein (CTLA-4) and α-glucocorticoid-induced TNFR family related gene (GITR) in doses that induced tumor regression, increased the magnitude of responses and unmasked functional T cell responses against another neo-antigen, UNC45a. Importantly, the magnitude of the pre-treatment draining lymph node (dLN) response to UNC45a closely corresponded to ICPB therapy outcomes. Surprisingly however, boosting pre-treatment UNC45a-specific T cell numbers did not improve response rates to ICPB. These observations suggest a novel biomarker approach to the clinical prediction of ICPB response and have important implications for the development of neo-antigen vaccines.
Assuntos
Vacinas Anticâncer , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias , Animais , Antígenos de Neoplasias/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfonodos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CitotóxicosRESUMO
Immune checkpoint inhibitors (ICI) such as PD-1/PD-L1 antibodies (Abs) and CTLA4 Abs and T cell-based adoptive cell therapies are effective for patients with various cancers. However, response rates of ICI monotherapies are still limited due to lack of immunogenic antigens and various immune-resistant mechanisms. The latter includes adaptive immune resistance that is caused by anti-tumor T cells (e.g. PD-L1 induced by IFN-γ from T cells) and primary immune resistance that is caused by cancer cells (e.g. immunosuppressive cytokines produced by cancer cells). Further understanding of the immune-resistant mechanisms, which may be possible through comparative analyses of responders and non-responders to the immunotherapies, will lead to the identification of new diagnostic biomarkers and therapeutic targets for development of effective cancer immuno therapies.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Imunidade Adaptativa , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Imunoterapia , Neoplasias/patologia , Linfócitos T/imunologiaRESUMO
There is mounting evidence that the immune system can spontaneously clear malignant lesions before they manifest as overt cancer, albeit this activity has been difficult to demonstrate in humans. The calreticulin (CALR) exon 9 mutations are driver mutations in patients with chronic myeloproliferative neoplasms (MPN), which are chronic blood cancers. The CALR mutations generate a neo-antigen that is recognized by patient T cells, and T cells isolated from a patient with a CALR-mutation can recognize and kill autologous CALR-mutant cells. Surprisingly, healthy individuals display frequent and strong T cell responses to the CALR neo-antigens too. Furthermore, healthy individuals display immune responses to all parts of the mutant CALR epitope, and the CALR neo-epitope specific responses are memory T cell responses. These data suggest that although healthy individuals might acquire a CALR mutation, the mutant cells can be eliminated by the immune system. Additionally, a small fraction of healthy individuals harbor a CALR exon 9 mutation. Four healthy individuals carrying CALR mutations underwent a full medical examination including a bone marrow biopsy after a median follow up of 6.2 years. None of these patients displayed any signs of CALR-mutant MPN. Additionally, all healthy individuals displayed strong CALR neo-epitope specific T cell responses suggesting that these healthy individuals retained their CALR-mutant cells in the editing stage for several years. Thus, we suggest that CALR-mutant MPN could be a disease model of cancer immuno-editing, as we have demonstrated that CALR-mutant MPN displays all three stages described in the theory of cancer immuno-editing.
Assuntos
Suscetibilidade a Doenças , Neoplasias Hematológicas/etiologia , Imunomodulação , Evasão Tumoral , Animais , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais , Calreticulina/genética , Calreticulina/metabolismo , Transformação Celular Neoplásica , Modelos Animais de Doenças , Epitopos/imunologia , Neoplasias Hematológicas/metabolismo , Humanos , Imunomodulação/genética , Mutação , Evasão Tumoral/genéticaRESUMO
Due to their secretory function, ß cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in ß cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous ß cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of ß cell proteins. This article summarizes emerging knowledge about stress-induced changes in ß cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and ß cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.
Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Epitopos de Linfócito B/imunologia , Estresse Oxidativo/imunologia , Animais , Humanos , Processamento de Proteína Pós-Traducional/imunologiaRESUMO
BACKGROUND: Mutant peptides presented by cancer cells are superior vaccine candidates than self peptides. The efficacy of mutant K-Ras, P53 and EGFR (Epidermal Growth Factor Receptor) peptides have been tested as cancer vaccines in pancreatic, colorectal, and lung cancers. The immunogenicity of EGFR Del19 mutations, frequent in Chinese lung adenocarcinoma patients, remains unclear. RESULTS: We predicted the HLA binding epitopes of Del19 mutations of EGFR in Chinese lung adenocarcinoma patients with NetMHC software. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the EGFR-reactive IgG in lung cancer patients. Del19 mutations may be presented by multiple HLA Class I molecules, with delE746_A750 presented by 37.5% of Chinese population. For HLA Class II molecules, Del19 mutations of EGFR may be presented by multiple HLA-DRB1 molecules, with delE746_A750 presented by 58.1% of Chinese population. Serum reactivity to wild type EGFR protein was significantly higher in patients with Del19 EGFR mutations than those with EGFR L858R point mutation or with EGFR wild type genotype. CONCLUSIONS: These findings suggest that Del19 mutations of EGFR, with an estimated frequency of 40% in Chinese lung adenocarcinoma patients, may serve as unique targets for immunotherapy in Chinese lung cancer patients.
Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Imunidade , Deleção de Sequência , Adenocarcinoma de Pulmão/patologia , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Receptores ErbB/química , Receptores ErbB/genética , Feminino , Humanos , Mutação INDEL , Masculino , Estadiamento de NeoplasiasRESUMO
BACKGROUND: Immune escape is one of the hallmarks of cancer and several new treatment approaches attempt to modulate and restore the immune system's capability to target cancer cells. At the heart of the immune recognition process lies antigen presentation from somatic mutations. These neo-epitopes are emerging as attractive targets for cancer immunotherapy and new strategies for rapid identification of relevant candidates have become a priority. METHODS: We carefully screen TCGA data sets for recurrent somatic amino acid exchanges and apply MHC class I binding predictions. RESULTS: We propose a method for in silico selection and prioritization of candidates which have a high potential for neo-antigen generation and are likely to appear in multiple patients. While the percentage of patients carrying a specific neo-epitope and HLA-type combination is relatively small, the sheer number of new patients leads to surprisingly high reoccurence numbers. We identify 769 epitopes which are expected to occur in 77629 patients per year. CONCLUSION: While our candidate list will definitely contain false positives, the results provide an objective order for wet-lab testing of reusable neo-epitopes. Thus recurrent neo-epitopes may be suitable to supplement existing personalized T cell treatment approaches with precision treatment options.